Skip to main content
Log in

On the use of hand-held X-ray fluorescence spectroscopy coupled to Monte Carlo simulations for the depth assessment of painted objects: The case study of a sixteenth-century illuminated printed book

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper presents the application of an established XRF-MC (X-ray fluorescence-Monte Carlo) protocol to evaluate for the first time the thickness of pictorial layers in illuminated manuscripts. A previously investigated, sixteenth-century book printed in Paris (BPE, Inc. 438) was chosen as the case study: multiple analysis spots were scanned in selected areas (painted and unpainted) with p-XRF (hand-held XRF); later, the obtained spectra were compared against Monte Carlo simulations. Two pathways of MC simulations emerged: a three-layer model for the painted areas (stratigraphic sequence, from outer to inner: pictorial layer–underdrawing–parchment) and a two-layer model for the unpainted areas (underdrawing–parchment). Also, the calculated thickness of each simulated layer was compared against the thickness of micro-samples from Inc. 438. The results proved the protocol to provide quantitative compositional and stratigraphic data, yet with limitations. Results encourage the future research to elaborate a protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Johnston-Feller, Color Science in the Examination of Museum Objects, 1st edn. (Getty Publications, Los Angeles, 2001), pp. 15–98

    Google Scholar 

  2. J. Dong et al., Sci. Rep. (2018). https://doi.org/10.1038/s41598-017-15069-2

    Article  Google Scholar 

  3. M. Gil et al., Xray Spectrom. (2008). https://doi.org/10.1002/xrs.1024

    Article  Google Scholar 

  4. L. Brizi et al., Magn. Reson. Chem. (2020). https://doi.org/10.1002/mrc.5054

    Article  Google Scholar 

  5. S. Prati et al., Anal. Bioanal. Chem. (2013). https://doi.org/10.1007/s00216-012-6435-3

    Article  Google Scholar 

  6. S. Prati et al., Appl. Phys. A (2016). https://doi.org/10.1007/s41061-016-0025-3

    Article  Google Scholar 

  7. M. Clarke, Stud. Conserv. (2001). https://doi.org/10.1179/sic.2001.46.Supplement-1.3

    Article  Google Scholar 

  8. A.N. Shugar, J.L. Mass, Handheld XRF for Art and Archaeology (Leuven University Press, Leuven, 2012)

    Google Scholar 

  9. R.H. Tykot, Appl. Spectrosc. (2016). https://doi.org/10.1177/0003702815616745

    Article  Google Scholar 

  10. L. Bonizzoni et al., Appl. Phys. A (2007). https://doi.org/10.1007/s00339-008-4482-6

    Article  Google Scholar 

  11. L. Bonizzoni et al., Xray Spectrom. (2008). https://doi.org/10.1002/xrs.930

    Article  Google Scholar 

  12. S. Pessanha et al., Xray Spectrom. (2014). https://doi.org/10.1002/xrs.2518

    Article  Google Scholar 

  13. R.P. Gardner, J.M. Doster, X-Ray Spectrom. (1982). https://doi.org/10.1002/xrs.1300110409

    Article  Google Scholar 

  14. R.P. Gardner, J.M. Doster, X-Ray Spectrom. (1982). https://doi.org/10.1002/xrs.1300110410

    Article  Google Scholar 

  15. J.E. Fernandez, Comput. Phys. Commun. (1989). https://doi.org/10.1016/0010-4655(89)90083-0

    Article  Google Scholar 

  16. T. Schoonjans et al., Spectrochim. Acta Part B (2012). https://doi.org/10.1016/j.sab.2012.03.011

    Article  Google Scholar 

  17. V. Scot et al., Nucl. Instrum. Methods Phys. Res. B (2007). https://doi.org/10.1016/j.nimb.2007.04.205

    Book  Google Scholar 

  18. J. Baro et al., Nucl. Instrum. Methods Phys. Res. Sect. B (1995). https://doi.org/10.1016/0168-583X(95)00349-5

    Book  Google Scholar 

  19. X. Llovet et al., Surf. Interface Anal. (2005). https://doi.org/10.1002/sia.2096

    Article  Google Scholar 

  20. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Book  Google Scholar 

  21. S. Guatelli et al., IEEE Trans. Nucl. Sci. (2007). https://doi.org/10.1109/TNS.2007.896214

    Article  Google Scholar 

  22. J. Hendricks et al., Appl. Radiat. Isot. (2000). https://doi.org/10.1016/S0969-8043(00)00231-1

    Article  Google Scholar 

  23. T. Schoonjans et al., Spectrochim. Acta B (2013). https://doi.org/10.1016/j.sab.2012.12.011

    Article  Google Scholar 

  24. L. Vincze et al., Spectrochim. Acta B (1993). https://doi.org/10.1016/0584-8547(93)80060-8

    Article  Google Scholar 

  25. L. Vincze et al., Spectrochim. Acta B (1995). https://doi.org/10.1016/0584-8547(95)01361-X

    Article  Google Scholar 

  26. L. Vincze et al., Spectrochim. Acta B (1999). https://doi.org/10.1016/S0584-8547(99)00094-4

    Article  Google Scholar 

  27. U. Bottigli et al., Spectrochim. Acta B (2004). https://doi.org/10.1016/j.sab.2004.03.016

    Article  Google Scholar 

  28. B. Golosio et al., Comput. Phys. Commun. (2014). https://doi.org/10.1016/j.cpc.2013.10.034

    Article  Google Scholar 

  29. T. Schoonjans et al., Spectrochim. Acta Part B (2011). https://doi.org/10.1016/j.sab.2011.09.011

    Article  Google Scholar 

  30. A. Brunetti et al., At. Spectrosc. Spectrochim. Acta Part B (2015). https://doi.org/10.1016/j.sab.2015.03.014

    Article  Google Scholar 

  31. W. Giurlani et al., Coatings (2019). https://doi.org/10.3390/coatings9020079

    Article  Google Scholar 

  32. L. Angeli et al., J. Archaeol. Sci. Rep. (2019). https://doi.org/10.1016/j.jasrep.2019.01.008

    Article  Google Scholar 

  33. C. Bottaini et al., Spectrochim. Acta B (2015). https://doi.org/10.1016/j.sab.2014.10.015

    Article  Google Scholar 

  34. C. Bottaini et al., Appl. Spectr. (2018). https://doi.org/10.1177/0003702817721934

    Article  Google Scholar 

  35. C. Bottaini et al., Archaeol. Anthropol. Sci. (2018). https://doi.org/10.1007/s12520-017-0501-x

    Article  Google Scholar 

  36. C. Bottaini et al., Eur. Phys. J. Plus (2019). https://doi.org/10.1140/epjp/i2019-12894-4

    Article  Google Scholar 

  37. S. Pessanha et al., Spectrochim. Acta Part B At. Spectrosc. (2019). https://doi.org/10.1016/j.sab.2019.04.006

    Article  Google Scholar 

  38. M. Alfeld et al., J. Anal. At. Spectrom. (2011). https://doi.org/10.1039/C0JA00257G

    Article  Google Scholar 

  39. M. Alfeld et al., J. Anal. At. Spectrom. (2013). https://doi.org/10.1039/C3JA30341A

    Article  Google Scholar 

  40. M. Alfeld et al., Appl. Phys. A (2013). https://doi.org/10.1007/s00339-012-7526-x

    Article  Google Scholar 

  41. A.T. da Silva et al., Herit. Sci. (2017). https://doi.org/10.1186/s40494-017-0150-5

    Article  Google Scholar 

  42. F.P. Romano et al., J. Anal. At. Spectrom. (2017). https://doi.org/10.1039/C6JA00439C

    Article  Google Scholar 

  43. S. Saverwyns et al., Microchem. J. (2018). https://doi.org/10.1016/j.microc.2017.10.008

    Article  Google Scholar 

  44. S. Lins et al., Res. J. Appl. Sc. (2020). https://doi.org/10.3390/app10103582

    Article  Google Scholar 

  45. S. Lins et al., Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00175

    Article  Google Scholar 

  46. C. Miguel et al., J. Raman Spectrosc. (2009). https://doi.org/10.1002/jrs.2350Citations:38

  47. L. de Viguerie et al., Herit. Sci. (2018). https://doi.org/10.1186/s40494-018-0177-1

    Article  Google Scholar 

  48. P. Ricciardi et al., Microchem. J. (2016). https://doi.org/10.1016/j.microc.2015.10.020

    Article  Google Scholar 

  49. W. Faubel et al., Spectrochim. Acta Part B (2007). https://doi.org/10.1016/j.sab.2007.03.029

    Article  Google Scholar 

  50. M. Manso et al., Appl. Phys. A (2015). https://doi.org/10.1007/s00339-014-8924-z

    Article  Google Scholar 

  51. S. Legrand et al., Microchem. J. (2018). https://doi.org/10.1016/j.microc.2018.01.001

    Article  Google Scholar 

  52. G.I. Serhrouchni et al., Eur. Phys. J. Plus (2019). https://doi.org/10.1140/epjp/i2019-12896-2

    Article  Google Scholar 

  53. S. Pessanha et al., Spectrochim. Acta Part B (2018). https://doi.org/10.1016/j.sab.2018.04.021

    Article  Google Scholar 

  54. D.V. Thompson, The Materials and Techniques of Medieval Painting, 2nd edn. (Dover Publications, New York, 1956)

    Google Scholar 

  55. P. Renouard, J. Veyrin-Forrer, B. Moreau, Brigitte, Répertoire Des Imprimeurs Parisiens, 1st edn. (Paris-Abbeville, Imprimerie F. Paillart, 1965), pp. 197–198

  56. J. Müller, Dictionnaire Abrégé Des Imprimeurs, 1st edn. (Heitz, Paris, 1970), p. 76

    Google Scholar 

  57. M.B. Winn, Papers. Bibliographical Society of. America 103, 2 (2009)

  58. H. Tenschert, I. Nettekoven, C. Zöhl, Horae BMV, 1st edn. (Antiquariat Bibermühle, Ramsen, 2003-2015)

  59. I. Cid, Incunábulos da Biblioteca Pública e Arquivo Distrital de Évora(Biblioteca e Arquivo Distrital, Évora, 1988)

  60. M.-L. Polain, Marques des imprimeurs, 1st edn. (Slatkine, Paris, 1926), no. 103

  61. P. Renouard, Les Marques Typographiques Parisiennes (Champion, Paris, 1928), pp. 134–135

    Google Scholar 

  62. I. Nettekoven, Der Meister Der Apokalypsenrose Der Saint Chapelle (Brepols, Turnhout, 2004), p. 534

    Google Scholar 

  63. C. Miguel et al., J. Cul. Herit. (2019). https://doi.org/10.1016/j.culher.2019.05.014

    Article  Google Scholar 

  64. S. Bottura Scardina et al., Ge-conservación (2020). https://doi.org/10.37558/gec.v18i1.825

  65. C. Tibúrcio et al., Microchem. J. (2020). https://doi.org/10.1016/j.microc.2019.104455

    Article  Google Scholar 

  66. A. Brunetti et al., Spectrochim. Acta Part B At. Spectrosc. (2004). https://doi.org/10.1016/j.sab.2004.03.014

    Article  Google Scholar 

  67. T. He et al., Nucl. Instrum. Methods Phys. Res. (1990). https://doi.org/10.1016/0168-9002(90)90805-G

    Article  Google Scholar 

  68. E. Tomasini, G. Siracusano, M.S. Maier, Microchem. J. (2012). https://doi.org/10.1016/j.microc.2011.11.005

    Article  Google Scholar 

  69. M.E. Fleet, Biomaterials (2009). https://doi.org/10.1016/j.biomaterials.2008.12.007

    Article  Google Scholar 

  70. B.R. Singh et al., Proc. SPIE Biomol. Spectroscopy (1993). https://doi.org/10.1117/12.145242

    Article  Google Scholar 

  71. V. Balan et al., Materials (2019). https://doi.org/10.3390/ma12182884

    Article  Google Scholar 

  72. N. Kourkoumelis et al., Clin. Rev. Bone Miner. Metab. (2019). https://doi.org/10.1007/s12018-018-9255-y

    Article  Google Scholar 

  73. A. Schönemann, H.G. Edwards, Anal. Bioanal. Chem. (2011). https://doi.org/10.1007/2Fs00216-011-4855-0

    Article  Google Scholar 

  74. R.J. Meilunas, J.G. Bentsen, A. Steinberg, Stud. Conserv. (1990). https://doi.org/10.1179/sic.1990.35.1.33

    Article  Google Scholar 

  75. M. Lazzari, O. Chiantore, Oscar Polym. Degrad. Stab. (1999). https://doi.org/10.1016/S0141-3910(99)00020-8

    Article  Google Scholar 

  76. J. Mallégol, J.-L. Gardette, J. Lemaire, J. Am. Oil Chem. Soc. (2000). https://doi.org/10.1007/s11746-000-0042-4

    Article  Google Scholar 

  77. I.A. Balakhnina et al., J. Appl. Spectr. (2011). https://doi.org/10.1007/s10812-011-9444-7

    Article  Google Scholar 

  78. J.D. van Den Berg et al., J. Sep. Sci. (2004). https://doi.org/10.1002/jssc.200301610

    Article  Google Scholar 

  79. S. Boyatzis, E. Ioakimoglou, P. Argitis, J. Appl. Polym. (2002). https://doi.org/10.1002/app.10117

    Article  Google Scholar 

  80. Z.O. Oyman, W. Ming, R.R. van der Linde, Prog. Org. Coat. (2005). https://doi.org/10.1016/j.porgcoat.2005.06.004

    Article  Google Scholar 

  81. L. De Viguerie et al., Prog. Org. Coat. (2016). https://doi.org/10.1016/j.porgcoat.2015.12.010

    Article  Google Scholar 

  82. G. Ruscelli, Secreti del Reverendo Donno Alessio Piemontese (Venezia, 1555)

  83. A. Stijnman, Engraving and Etching (Brill-Hes & De Graaf, London, 2012)

    Google Scholar 

  84. D. Scalarone, M. Lazzari, O. Chiantore, J. Anal. Appl. Pyrolysis (2002). https://doi.org/10.1007/s00216-016-9772-9

    Article  Google Scholar 

  85. T.A. Cahill et al., Archaeometry (1984). https://doi.org/10.1111/j.1475-4754.1984.tb00312.x

    Article  Google Scholar 

  86. H. Mommsen et al., Archaeometry (1996). https://doi.org/10.1111/j.1475-4754.1996.tb00782.x

    Article  Google Scholar 

  87. C.S. Tumosa, M.F. Mecklenburg, Stud. Conserv. (2005). https://doi.org/10.1179/sic.2005.50.Supplement-1.39

    Article  Google Scholar 

  88. B.Z. Juita, E.M. Kennedy, J.C. Mackie, Fire Sci. Rev. (2012). https://doi.org/10.1186/2193-0414-1-3

    Article  Google Scholar 

  89. C. Miguel et al., Chemom. Intell. Lab. Syst. (2012). https://doi.org/10.1016/j.chemolab.2012.09.003

    Article  Google Scholar 

  90. S.M. Rousu et al., In Printing and Graphic Arts Conference (TAPPI Press, Atlanta, 2000), pp. 55–70

    Google Scholar 

  91. B. Lemière, J. Geochem. Explor. (2018). https://doi.org/10.1016/j.gexplo.2018.02.006

    Article  Google Scholar 

  92. H.M. Szczepanowska, Conservation of Cultural Heritage: Key Principles and Approaches (Routledge, London-New York, 2013), p. 40

    Book  Google Scholar 

Download references

Acknowledgements

The research was supported by the Portuguese Foundation for Science and Technology (FCT) by National Funds under the projects UIDP/04449/2020 (HERCULES Laboratory), DL 57/2016/CP1372/CT0012 (Norma Transitória), UIDB/00057/2020 (CIDEHUS/UE) and UIDB/04042/2020 (CIEBA/UL). The authors express their gratitude to the Public Library of Évora for authorising the analysis on BPE, Inc. 438 and making the item available for the study. Silvia Bottura Scardina thanks personally the University of Lisbon to allow the present study through the financial support of the research grant BD-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Miguel.

Ethics declarations

Funding

This study was funded by DL 57/2016/CP1372/CT0012 (Norma Transitória), UIDP/04449/2020 (HERCULES Laboratory) and BD-2017 (Grant for doctoral studies).

Conflict of interest

Antonio Brunetti, Carlo Bottaini and Catarina Miguel certify that they have no affiliation or involvement in any organisation or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript. Silvia Bottura Scardina certifies the involvement in the University of Lisbon for the attribution of the Ph.D. grant as the financial support of the project “The Technique of Illumination in the sixteenth-century Book of Hours—a Multidisciplinary Study of the Materials, Technique and Artistic Influences in Hardouyns’ Incunabula”

Data availability

Data are available on request from the authors.

Author contributions

CB planned and performed the p-XRF analysis; AB designed the MC model, the computational framework and carried out the MC simulations. SBS and CM interpreted the compositional data on the paints, and with AB analysed the data from the MC simulations. SBS wrote the manuscript with input from all authors. CB and CM conceived the study and SBS was in charge of overall direction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottura-Scardina, S., Brunetti, A., Bottaini, C. et al. On the use of hand-held X-ray fluorescence spectroscopy coupled to Monte Carlo simulations for the depth assessment of painted objects: The case study of a sixteenth-century illuminated printed book. Eur. Phys. J. Plus 136, 341 (2021). https://doi.org/10.1140/epjp/s13360-021-01326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01326-x

Navigation