Skip to main content
Log in

In nonlinear optics, fluid dynamics and plasma physics: symbolic computation on a (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff system in nonlinear optics, fluid dynamics and plasma physics is investigated via the symbolic computation in this paper. Soliton solutions, which are kink-shaped, are obtained via the Hirota method. Breather solutions are derived via the extended homoclinic test approach, and lump solutions are obtained from the breather solutions under a limiting procedure. We find that the shape and amplitude of the one soliton keep unchanged during the propagation, and the velocity of one soliton depends on all the coefficients in the system. We graphically demonstrate that the interaction between the two solitons is elastic, and analyse the solitons with the influence of the coefficients. We observe that the amplitudes and shapes of the breather and lump remain unchanged during the propagation, and graphically present the breathers and lumps with the influence of the coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No new data were created or analysed in this study.]

Notes

  1. The terms “long” and“small” are meant in comparison with the depth of the channel.

References

  1. E.F. El-Zaidia, A.A. Darwish, I.S. Yahia, Eur. Phys. J. Plus 136, 422 (2021)

    Article  Google Scholar 

  2. P. Polimeno et al., Eur. Phys. J. Plus 136, 339 (2021)

    Article  Google Scholar 

  3. J.J. Xu, X.Y. Li, J.B. Xiong, C.Q. Yuan, S. Semin, T. Rasing, X.H. Bu, Adv. Mater. 32, 1806736 (2020)

    Article  Google Scholar 

  4. S. Ershkov, D. Leshchenko, E.I. Abouelmagd, Eur. Phys. J. Plus 136, 387 (2021)

    Article  Google Scholar 

  5. S.N. Dolon, M.S. Hasan, G. Lorenzini, R.N. Mondal, Eur. Phys. J. Plus 136, 382 (2021)

    Article  Google Scholar 

  6. L. Hu, Y.T. Gao, T.T. Jia, G.F. Deng, L.Q. Li, Z. Angew, Math. Phys. 72, 75 (2021)

    Article  MathSciNet  Google Scholar 

  7. G.F. Deng, Y.T. Gao, J.J. Su, C.C. Ding, T.T. Jia, Nonlinear Dyn. 99, 1039 (2020)

    Article  Google Scholar 

  8. S. Demir, M. Tanisli, M.E. Kansu, Eur. Phys. J. Plus 136, 332 (2021)

  9. F.Y. Liu, Y.T. Gao, X. Yu, L.Q. Li, C.C. Ding, D. Wang, Eur. Phys. J. Plus (2021) in press, Ms. No. EPJP-D-20-03633R2

  10. B. Zohuri, Plasma Physics and Controlled Thermonuclear Reactions Driven Fusion Energy (Springer, Switzerland, 2016)

    Book  Google Scholar 

  11. J.M. Dudley, G. Genty, A. Mussot, A. Chabchoub, F. Dias, Nat. Rev. Phys. 1, 675 (2019)

    Article  Google Scholar 

  12. A.R. Seadawy, N. Cheemaa, Phys. A 529, 121330 (2019)

    Article  MathSciNet  Google Scholar 

  13. G.F. Deng, Y.T. Gao, C.C. Ding, J.J. Su, Chaos Solitons Fract. 140, 110085 (2020)

    Article  Google Scholar 

  14. D. Kumar, A.R. Seadawy, M.R. Haque, Chaos Solitons Fract. 115, 62 (2018)

    Article  ADS  Google Scholar 

  15. Z.Z. Lan, Appl. Math. Lett. 94, 126 (2019)

    Article  MathSciNet  Google Scholar 

  16. Z.Z. Lan, B. Gao, M.J. Du, Waves Random Complex 29, 63 (2019)

    Article  ADS  Google Scholar 

  17. W.X. Ma, Appl. Math. Lett. 102, 106161 (2020)

    Article  MathSciNet  Google Scholar 

  18. Y.Q. Yang, T. Suzuki, J.Y. Wang, Commun. Nonlinear Sci. Numer. Simulat. 95, 105626 (2021)

    Article  Google Scholar 

  19. X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Math. Lett. 104, 106170 (2020)

    Article  MathSciNet  Google Scholar 

  20. X.Y. Gao, Y.J. Guo, W.R. Shan, Chaos Solitons Fract. 138, 109950 (2020)

    Article  Google Scholar 

  21. X.Y. Gao, Y.J. Guo, W.R. Shan, Chaos Solitons Fract. 142, 110367 (2021)

    Article  Google Scholar 

  22. X.Y. Gao, Y.J. Guo, W.R. Shan, Y.Q. Yuan, C.R. Zhang, S.S. Chen, Appl. Math. Lett. 111, 106627 (2021)

    Article  MathSciNet  Google Scholar 

  23. X.Y. Gao, Y.J. Guo, W.R. Shan, Chin. J. Phys. 70, 264 (2021)

    Article  Google Scholar 

  24. X.Y. Gao, Y.J. Guo, W.R. Shan, Acta Mech. 231, 4415 (2020)

    Article  MathSciNet  Google Scholar 

  25. Y. Shen, B. Tian, Appl. Math. Lett., (2021). https://doi.org/10.1016/j.aml.2021.107301

  26. Y. Shen, B. Tian, X. Zhao, W. R. Shan, Y. Jiang, Pramana-J. Phys., (2021) in press, Ms. No. PRAM-D-20-00865R2

  27. M. Wang, B. Tian, S. H. Liu, W. R. Shan, Y. Jiang, Eur. Phys. J. Plus, (2021) in press, Ms. No. EPJP-D-20-03582R1

  28. X.Y. Gao, Y.J. Guo, W.R. Shan, Phys. Lett. A 384, 126788 (2020)

    Article  MathSciNet  Google Scholar 

  29. S.P. Mukam, A. Souleymanou, V.K. Kuetche, T.B. Bouetou, Nonlinear Dyn. 93, 373 (2018)

  30. M. Wang, B. Tian, C.C. Hu, S.H. Liu, Appl. Math. Lett. 119, 106936 (2021)

  31. J.J. Su, Y.T. Gao, C.C. Ding, Appl. Math. Lett. 88, 201 (2019)

    Article  MathSciNet  Google Scholar 

  32. T.T. Jia, Y.T. Gao, X. Yu, L.Q. Li, Appl. Math. Lett. 114, 106702 (2021)

    Article  MathSciNet  Google Scholar 

  33. C.C. Ding, Y.T. Gao, G.F. Deng, D. Wang, Chaos Solitons Fract. 133, 109580 (2020)

    Article  Google Scholar 

  34. M. Gürses, A. Pekcan, Commun. Nonlinear Sci. Numer. Simula. 67, 427 (2019)

    Article  ADS  Google Scholar 

  35. M. Kumar, A.K. Tiwari, Comput. Math. Appl. 75, 1434 (2018)

    Article  MathSciNet  Google Scholar 

  36. F.Y. Liu, Y.T. Gao, X. Yu, C.C. Ding, G.F. Deng, T.T. Jia, Chaos Solitons Fract. 144, 110559 (2021)

    Article  Google Scholar 

  37. A.M. Wazwaz, Phys. Lett. A 384, 126310 (2020)

    Article  MathSciNet  Google Scholar 

  38. Y.J. Feng, Y.T. Gao, L.Q. Li, T.T. Jia, Eur. Phys. J. Plus 135, 272 (2020)

    Article  Google Scholar 

  39. Y.J. Feng, Y.T. Gao, T.T. Jia, L.Q. Li, Mod. Phys. Lett. B 33, 1950354 (2019)

    Article  ADS  Google Scholar 

  40. L. Hu, Y.T. Gao, S.L. Jia, J.J. Su, G.F. Deng, Mod. Phys. Lett. B 33, 1950376 (2019)

    Article  ADS  Google Scholar 

  41. T.T. Jia, Y.T. Gao, G.F. Deng, L. Hu, Nonlinear Dyn. 98, 269 (2019)

    Article  Google Scholar 

  42. L.Q. Li, Y.T. Gao, L. Hu, T.T. Jia, C.C. Ding, Y.J. Feng, Nonlinear Dyn. 100, 2729 (2020)

    Article  Google Scholar 

  43. C.C. Ding, Y.T. Gao, G.F. Deng, Nonlinear Dyn. 97, 2023 (2019)

    Article  Google Scholar 

  44. T.A. Sulaiman, A. Yusuf, A. Atangana, Commun. Theor. Phys. 72, 085004 (2020)

    Article  ADS  Google Scholar 

  45. M. Wang, B. Tian, Y. Sun, Z. Zhang, Comput. Math. Appl. 79, 576 (2020)

    Article  MathSciNet  Google Scholar 

  46. M. Wang, B. Tian, Q.X. Qu, X.X. Du, C.R. Zhang, Z. Zhang, Eur. Phys. J. Plus 134, 578 (2019)

    Article  Google Scholar 

  47. M. Wang, B. Tian, Y. Sun, H.M. Yin, Z. Zhang, Chin. J. Phys. 60, 440 (2019)

    Article  Google Scholar 

  48. J.J. Su, Y.T. Gao, G.F. Deng, T.T. Jia, Phys. Rev. E 100, 042210 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  49. Y. Shen, B. Tian, C.R. Zhang, H.Y. Tian, S.H. Liu, Mod. Phys. Lett. B (2021). https://doi.org/10.1142/S0217984921502614

    Article  Google Scholar 

  50. Y. Shen, B. Tian, S.H. Liu, D.Y. Yang, Phys. Scr. 96, 075212 (2021)

  51. D.J. Kedzioraa, A. Ankiewicz, N. Akhmediev, Eur. Phys. J. Spec. Top. 223, 43 (2014)

    Article  Google Scholar 

  52. S. Manukure, Y. Zhou, W.X. Ma, Comput. Math. Appl. 75, 2414 (2018)

    Article  MathSciNet  Google Scholar 

  53. Q.X. Chen, W.X. Ma, Y.H. Huang, Phys. Scr. 95, 095207 (2020)

    Article  ADS  Google Scholar 

  54. A.M. Wazwaz, Chaos Solitons Fract. 12, 2283 (2001)

    Article  ADS  Google Scholar 

  55. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge Univ. Press, New York, 1991)

    Book  MATH  Google Scholar 

  56. D.J. Korteweg, G. de Vries, Philos. Mag. 39, 422 (1895)

    Article  MathSciNet  Google Scholar 

  57. A.M. Wazwaz, Appl. Math. Lett. 58, 1 (2016)

    Article  MathSciNet  Google Scholar 

  58. A.I. Aliyu, Y.J. Li, Eur. Phys. J. Plus 135, 119 (2020)

    Article  Google Scholar 

  59. S.T. Chen, W.X. Ma, Comput. Math. Appl. 76, 1680 (2018)

    Article  MathSciNet  Google Scholar 

  60. R. Hirota, The Direct Method in Soliton Theory (Cambridge Univ. Press, New York, 2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Tian, B. & Zhou, TY. In nonlinear optics, fluid dynamics and plasma physics: symbolic computation on a (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff system. Eur. Phys. J. Plus 136, 572 (2021). https://doi.org/10.1140/epjp/s13360-021-01323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01323-0

Navigation