Skip to main content
Log in

Ultrahigh accuracy time synchronization technique operation on the Moon

  • Letter to the Editor
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Ultrahigh accuracy time synchronization technique based on the optical frequency comb and the GHZ radio frequency spiral scanning deflector is suggested to install on the Moon during the ARTEMIS mission planned by NASA for 2024. The comparison with the parameters of an analogous device operated in the Earth’s gravity will enable the testing to high accuracy fundamental physical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. Ken Nordtvedt had told to one of the authors (VG), how he approached Robert Dicke, then NASA official, during a joint air flight, suggesting to include a retroreflector in Apollo 11 mission.

  2. This is the extended version of the Artemis Science White Paper N.2013, NASA.

References

  1. V.G. Gurzadyan, A.T. Margaryan, The light speed versus the observer: the Kennedy-Thorndike test from GRAAL-ESRF. Eur. Phys. J. C 78, 607 (2018). ((Highlighted in New Scientist, 9 August 2018, “High-speed electrons prove Einstein was right about the speed of light’’))

    Article  ADS  Google Scholar 

  2. I. Ciufolini, R. Matzner, V. Gurzadyan, R. Penrose, A new laser-ranged satellite for general relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment. Eur. Phys. J. C 77, 819 (2017)

    Article  ADS  Google Scholar 

  3. V.G. Gurzadyan, I. Ciufolini, H.G. Khachatryan, S. Mirzoyan, A. Paolozzi, G. Sindoni, On the Earth’s tidal perturbations for the LARES satellite. Eur. Phys. J. Plus 132, 548 (2017)

    Article  Google Scholar 

  4. T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  5. S.A. Diddams, J. Ye, L. Hollberg, Femtosecond lasers for optical clocks and low noise frequency synthesis, in Femtosecond Optical Frequency Comb: Principle, Operation and Applications. ed. by S. Cundiff, J. Ye (Springer, New York, 2004)

    Google Scholar 

  6. A. Margaryan et al., Radiofrequency picosecond phototube. Nucl. Instr. Methods Phys. Res. A 566, 321 (2006)

    Article  ADS  Google Scholar 

  7. A. Margaryan et al., Radio Frequency Phototube, United States Patent, No. US 8138460B1, March 20 (2012)

  8. A. Margaryan, Radio frequency phototube and optical clock: high resolution, high rate and highly stable single photon timing technique. Nucl. Instr. Methods Phys. Res. A 652, 504 (2011)

    Article  ADS  Google Scholar 

  9. A. Margaryan, Optical clock, radio frequency timing technique and a new Earth-bounded gravitational redshift experiment. Arm. J. Phys. 3, 34 (2010)

    MathSciNet  Google Scholar 

  10. W. Uhring, C.V. Zint, P. Summ, B. Cunin, Very high long-term stability synchroscan streak camera. Rev. Sci. Instr. 74, 2646 (2003)

    Article  ADS  Google Scholar 

  11. J.P. Turneaure et al., Test of the principle of equivalence by a null gravitational redshift experiment. Phys. Rev. D 27, 1705 (1983)

    Article  ADS  Google Scholar 

  12. A. Godone, C. Novero, P. Tavella, Null gravitational redshift experiment with nonidentical atomic clocks. Phys. Rev. D 51, 319 (1995)

    Article  ADS  Google Scholar 

  13. C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relat. 17, 4 (2014)

    Article  ADS  Google Scholar 

  14. R.F.C. Vessot et al., Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081 (1980)

    Article  ADS  Google Scholar 

  15. R.F.C. Vessot, Past and future tests of relativistic gravitation with atomic clocks. In: M. Demianski and C. W. F. Everitt (eds) The First William Fairbank Meeting on Relativistic Gravitational Experiments in Space, Adv. Series in Astrophysics and Cosmology, vol. 7, p. 435, World Scientific (1993)

  16. H. Bergeron et al., Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path. Optica 3(4), 441 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by International Science and Technology Center (ISTC) Grant A-2390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Gurzadyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurzadyan, V.G., Margaryan, A.T. Ultrahigh accuracy time synchronization technique operation on the Moon. Eur. Phys. J. Plus 136, 329 (2021). https://doi.org/10.1140/epjp/s13360-021-01309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01309-y

Navigation