Skip to main content
Log in

Minimally deformed charged anisotropic spherical solution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present article is dedicated to the study of charged anisotropic solutions in the background of gravitational decoupling via. minimal geometric deformation (MGD) approach. In this work, we emphasize on the background of MGD that how this MGD approach works. Here, we have minimally deformed the radial component of the spacetime as \(e^{-\lambda }\longrightarrow \mu +\alpha \,f(r)\), where \(\alpha \) is a coupling constant. Next, we determined the decoupler function f(r) by using well-known constraints procedure, namely mimic constraints to the radial pressure, and then components for the \(\theta \)–sector governed by extra source. The obtained decoupler function f(r) vanishes at the center as well as on the stellar boundary. The constants involved in the solution have been determined by using well-known Reissner–Nordström solution. Finally, we have presented the graphical representation with detailed analysis for describing the physical and astrophysical viability of the solution through the modeling of the stellar objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In the present case, \(M_{ch}=M=M_{0}\), since f(r) vanishes at boundary of the stellar objects.

References

  1. J. Ovalle, Phys. Rev. D 95, 104019 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Ovalle, Phys. Lett. B 788, 213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. S.K. Maurya, F. Tello-Ortiz, Eur. Phys. J. C 79, 85 (2019)

    Article  ADS  Google Scholar 

  4. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C 78, 122 (2018)

    Article  ADS  Google Scholar 

  5. S. Hensh, Z. Stuchlík, Eur. Phys. J. C 79, 834 (2019)

    Article  ADS  Google Scholar 

  6. F. Tello-Ortiz, S.K. Maurya, Y. Gomez-Leyton, Eur. Phys. J. C 80, 324 (2020)

    Article  ADS  Google Scholar 

  7. K.N. Singh, S.K. Maurya, M.K. Jasim, F. Rahaman, Eur. Phys. J. C 79, 851 (2019)

    Article  ADS  Google Scholar 

  8. S.K. Maurya, F. Tello-Ortiz, M.K. Jasim, Eur. Phys. J. C 80, 918 (2020)

    Article  ADS  Google Scholar 

  9. S.K. Maurya, K.N. Singh, B. Dayanandan, Eur. Phys. J. C 80, 448 (2020)

    Article  ADS  Google Scholar 

  10. S.K. Maurya, Eur. Phys. J. C 79, 958 (2019)

    Article  ADS  Google Scholar 

  11. S.K. Maurya, Eur. Phys. J. C 80, 429 (2020)

    Article  ADS  Google Scholar 

  12. R. da Rocha, Phys. Rev. D 95, 124017 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. R. da Rocha, Eur. Phys. J. C 77, 355 (2017)

    Article  ADS  Google Scholar 

  14. R. da Rocha, Symmetry 12, 508 (2020)

    Article  Google Scholar 

  15. J. Ovalle et al., Europhys. Lett. 124, 20004 (2018)

    Article  ADS  Google Scholar 

  16. J. Ovalle et al., Class. Quantum Grav. 36, 205010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Ovalle et al., Eur. Phys. J. C 78, 960 (2018)

    Article  ADS  Google Scholar 

  18. J. Ovalle, R. Casadio, E. Contreras, A. Sotomayor, Phys. Dark Univ. 31, 100744 (2021)

    Article  Google Scholar 

  19. J. Ovalle, R. Casadio, A generalization of the minimal geometric deformation. Beyond Einstein Gravity 77–93 (2020)

  20. J. Ovalle, R. Casadio, A. Sotomayor, Advances in High Energy Physics, 2017. https://doi.org/10.1155/2017/9756914

  21. J. Ovalle, L.A. Gergely, R. Casadio, Class. Quantum Grav. 32, 045015 (2015)

    Article  ADS  Google Scholar 

  22. J. Ovalle, A. Sotomayor, Eur. Phys. J. Plus 133, 428 (2018)

    Article  Google Scholar 

  23. J. Ovalle, F. Linares, Phys. Rev. D 88, 104026 (2013)

    Article  ADS  Google Scholar 

  24. J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, Class. Quantum Grav. 30, 175019 (2013)

    Article  ADS  Google Scholar 

  25. J. Ovalle, Int. J. Mod. Phys.: Conf. Ser. 41, 1660132 (2016)

    Google Scholar 

  26. M. Estrada, F. Tello-Ortiz, Eur. Phys. J. Plus 133, 453 (2018)

    Article  Google Scholar 

  27. M. Estrada, R. Prado, Eur. Phys. J. Plus 134, 168 (2019)

    Article  Google Scholar 

  28. C. Las Heras and P. Leon, Fortschr. Phys. 66, 1800036 (2018)

  29. L. Gabbanelli et al., Eur. Phys. J. C 78, 370 (2018)

    Article  ADS  Google Scholar 

  30. L. Gabbanelli et al., Eur. Phys. J. C 79, 486 (2019)

    Article  ADS  Google Scholar 

  31. M. Sharif, S. Sadiq, Eur. Phys. J. C 78, 410 (2018)

    Article  ADS  Google Scholar 

  32. M. Sharif, S. Sadiq, Eur. Phys. J. Plus 133, 245 (2018)

    Article  Google Scholar 

  33. M. Sharif, A. Majid, Phys. Dark Univ. 30, 100610 (2020)

    Article  Google Scholar 

  34. M. Sharif et al., 2020 Chin. J. Phys. 65, 207 (2019)

  35. A. Fernandes-Silva et al., Eur. Phys. J. C 78, 631 (2018)

    Article  ADS  Google Scholar 

  36. A. Fernandes-Silva, R. da Rocha, Eur. Phys. J. C 78, 271 (2018)

    Article  Google Scholar 

  37. A. Fernandes-Silva et al., Phys. Lett. B 791, 323 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 558 (2018)

    Article  ADS  Google Scholar 

  39. E. Morales, E. Tello-Ortiz, Eur. Phys. J. C 78, 841 (2018)

    Article  ADS  Google Scholar 

  40. E. Morales, E. Tello-Ortiz, Eur. Phys. J. C 78, 618 (2018)

    Article  ADS  Google Scholar 

  41. E. Contreras, Eur. Phys. J. C 78, 678 (2018)

    Article  ADS  Google Scholar 

  42. E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 985 (2018)

    Article  ADS  Google Scholar 

  43. E. Contreras, Class. Quantum Grav. 36, 095004 (2019)

    Article  ADS  Google Scholar 

  44. E. Contreras et al., Eur. Phys. J. C 79, 216 (2019)

    Article  ADS  Google Scholar 

  45. E. Contreras, P. Bargueño, Class. Quantum Grav. 36, 215009 (2019)

    Article  ADS  Google Scholar 

  46. G. Panotopoulos, Á. Rincon, Eur. Phys. J. C 78, 851 (2018)

  47. C. Las Heras C, P. Leon, Eur. Phys. J. C 79, 990 (2019)

  48. V. Torres, E. Contreras, Eur. Phys. J. C 70, 829 (2019)

    Article  ADS  Google Scholar 

  49. F. Linares, E. Contreras, Phys. Dark Univ. 28, 100543 (2020)

    Article  Google Scholar 

  50. R. Casadio et al., Eur. Phys. J. C 79, 826 (2019)

    Article  ADS  Google Scholar 

  51. R. Casadio et al., Class. Quantum Grav. 35, 185001 (2018)

    Article  ADS  Google Scholar 

  52. R. Casadio, J. Ovalle, R. Da Rocha, Class. Quantum Grav. 32, 215020 (2015)

    Article  ADS  Google Scholar 

  53. R. Casadio, J. Ovalle, R. Da Rocha, Class. Quantum Grav. 31, 045016 (2015)

    Article  ADS  Google Scholar 

  54. R. Casadio, J. Ovalle, Gen. Rel. Grav. 46, 1669 (2014)

    Article  ADS  Google Scholar 

  55. R. Casadio, J. Ovalle: Phys. Lett. B 715, 251-255

  56. R. Casadio, J. Ovalle, R. Da Rocha, EPL (Europhys. Lett.) 110, 40003 (2015)

    Article  ADS  Google Scholar 

  57. R. Casadio, J. Ovalle, Phys. Lett. B 715, 251 (2012)

    Article  ADS  Google Scholar 

  58. A. Rincon et al., Eur. Phys. J. C 79, 873 (2019)

    Article  ADS  Google Scholar 

  59. A. Rincon et al., Eur. Phys. J. C 80, 490 (2020)

    Article  ADS  Google Scholar 

  60. F. Tello-Ortiz, Eur. Phys. J. C 80, 413 (2020)

    Article  ADS  Google Scholar 

  61. C. Arias et al., Eur. Phys. J. C 80, 463 (2020)

    Article  ADS  Google Scholar 

  62. G. Abellán et al., Eur. Phys. J. C 80, 177 (2020)

    Article  ADS  Google Scholar 

  63. J. Ovalle, R. Casadio, Beyond Einstein Gravity the Minimal Geometric Deformation Approach in the Brane-World (Springer, Berlin, 2020)

    Book  MATH  Google Scholar 

  64. M. Sharif, S. Sadiq, Eur. Phys. J. C 78, 921 (2018)

    Article  ADS  Google Scholar 

  65. M. Estrada, Eur. Phys. J. C 79, 918 (2019)

    Article  ADS  Google Scholar 

  66. S.K. Maurya, F. Tello-Ortiz, Phys. Dark Univ. 27, 100442 (2020)

    Article  Google Scholar 

  67. S.K. Maurya, F. Tello-Ortiz, S. Ray, Phys. Dark Univ. 31, 100753 (2021)

    Article  Google Scholar 

  68. S.K. Maurya, F. Tello-Ortiz, Phys. Dark Univ. 29, 100577 (2020)

    Article  Google Scholar 

  69. P. Leon, A. Sotomayor, Fortschr. Phys. 67, 1900077 (2019)

    Article  MathSciNet  Google Scholar 

  70. E. Contreras, J. Ovalle, R. Casadio, Phys. Rev. D 103, 044020 (2021)

    Article  ADS  Google Scholar 

  71. F. de Felice, Y. Yu, J. Fang, Mon. Not. R. Astron. Soc. 277, L17 (1995)

    ADS  Google Scholar 

  72. R. Sharma, S. Mukherjee, S.D. Maharaj, Gen. Relativ. Gravit. 33, 999 (2001)

    Article  ADS  Google Scholar 

  73. B.V. Ivanov, Phys. Rev. D 65, 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  74. W.B. Bonnor, Mon. Not. R. Astron. Soc. 137, 239 (1965)

    Article  ADS  Google Scholar 

  75. S. Ray, A.L. Espíndola, M. Malheiro, J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 68, 084004 (2003)

    Article  ADS  Google Scholar 

  76. B. Das, P.C. Ray, I. Radinschi, F. Rahaman, S. Ray, Int. J. Mod. Phys. D 20, 1675 (2011)

    Article  ADS  Google Scholar 

  77. M. Malaver, AASCIT Commun. 1, 48 (2014)

    Google Scholar 

  78. R.P. Negreiros, F. Weber, M. Malheiro, V. Usov, Phys. Rev. D 80, 083006 (2009)

    Article  ADS  Google Scholar 

  79. J.D.V. Arbañil, M. Malheiro, Phys. Rev. D 92, 084009 (2015)

    Article  ADS  Google Scholar 

  80. L. Paulucci, J.E. Horvath, Phys. Lett. B 733, 164 (2014)

    Article  ADS  Google Scholar 

  81. J. Kumar, A.K. Prasad, S.K. Maurya, A. Banerjee, J. Cosmol. Astropart. Phys. 1911, 005 (2019)

    Article  ADS  Google Scholar 

  82. S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 333, 149 (2011)

    Article  ADS  Google Scholar 

  83. N. Pant, S.K. Maurya, Appl. Math. Comput. 218(17), 8260–8268 (2012)

    MathSciNet  Google Scholar 

  84. S.K. Maurya, A. Banerjee, P. Channuie, Chin. Phys. C 42, 055101 (2018)

    Article  ADS  Google Scholar 

  85. S.K. Maurya, F. Tello-Ortiz, Eur. Phys. J. C 79, 33 (2019)

    Article  ADS  Google Scholar 

  86. B. Dayanandan et al., Astrophys. Space Sci. 365, 20 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  87. S.K. Maurya, S.R. Chowdhury, S. Ray, B. Dayanandan, Can. J. Phys. 97, 1323 (2019)

    Article  ADS  Google Scholar 

  88. W. Israel, Nuovo Cimento B 44, 1 (1966)

    Article  ADS  Google Scholar 

  89. G. Darmois, Memorial Des Sciences Mathematiques (Gauthier-Villars, Paris, 1927)

    Google Scholar 

  90. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

    Article  ADS  Google Scholar 

  91. H. Andreasson, J. Differ. Equ. 245, 2243 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  92. C.G. Bohmer, T. Harko, Gen. Relat. Gravit. 39, 757 (2007)

    Article  ADS  Google Scholar 

  93. H. Abreu, H. Hernàndez, L.A. Nùñez, Calss. Quantum Gravity 24, 4631 (2007)

    Article  ADS  Google Scholar 

  94. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  95. B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

  96. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. K. Maurya and Laila Al-Farsi acknowledge that this work is carried out under TRC project-BFP/RGP/CBS/19/099 of the Sultanate of Oman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Maurya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Al-Farsi, L.S.S. Minimally deformed charged anisotropic spherical solution. Eur. Phys. J. Plus 136, 317 (2021). https://doi.org/10.1140/epjp/s13360-021-01252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01252-y

Navigation