Skip to main content

The neutron cross section of barite-enriched concrete for radioprotection shielding in the range 1 meV–1 keV

Abstract

We present a characterization of a series of barite-enriched concrete samples at the atomic scale using neutron-based techniques. In particular, neutron transmission measurements provide the macroscopic cross section (also known as neutron removal cross section) as a function of the incident neutron energy in the range 1 meV–1 keV. In this range, where fewer experimental investigations are available in the literature, the cross section is dominated by the scattering events from hydrogen, as opposed to the fast-neutron region (MeV-energy neutrons) where capture events by Ba are more important. Moreover, below 1 eV, the cross section depends on the molecular or crystal structure of the components. For each sample, the amounts of barium and hydrogen are provided by neutron resonance capture analysis and deep inelastic neutron scattering, respectively. We find that the amounts of barium and hydrogen are correlated, with a lower amount of hydrogen in the samples with more barium, likely because of the absence of some calcium-silicon-hydrate structures, whose formation is inhibited by the presence of barite. Moreover, we quantify the non-negligible contribution to the neutron macroscopic cross section arising from water molecules loosely bound in concrete. This contribution makes the shielding performance of concrete dependent upon the humidity and temperature conditions affecting the installation. Our results provide additional guidelines for radioprotection workers to determine the optimal concentration of barite in mixed gamma/neutron radiation environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Raw data related to this article were generated at the ISIS Neutron and Muon Source (UK), DOI: https://doi.org/10.5286/ISIS.E.RB2000164. Derived data supporting the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. 1.

    K. Sakr, W. Ramadan, M. Sayed, T. El-Zakla, M. El-Desouqy, N. El-Faramawy, Radiat. Eff. Defects Solids 173(3–4), 269–282 (2018)

    ADS  Article  Google Scholar 

  2. 2.

    T. Piotrowski, D. Tefelski, A. Polański, J. Skubalski, Open Eng. 2(2), 296–303 (2012)

    Article  Google Scholar 

  3. 3.

    B. Oto, A. Gur, E. Kavaz, T. Cakir, N. Yaltay, Prog. Nucl. En. 92, 71–80 (2016)

    Article  Google Scholar 

  4. 4.

    A. Mesbahi, H. Ghiasi, App. Rad. Isot. 136, 27–31 (2018)

    Article  Google Scholar 

  5. 5.

    G. Molnar, Handbook of Prompt Gamma Activation Analysis: With Neutron Beams, vol. 1 (Springer Science & Business Media, Berlin, 2004)

    Book  Google Scholar 

  6. 6.

    T. Belgya, Z. Kis, L. Szentmiklósi, Z. Kasztovszky, P. Kudejova, R. Schulze, T. Materna, G. Festa, P.A. Caroppi, J. Rad. Nucl. Chem. 278(3), 751–754 (2008)

    Article  Google Scholar 

  7. 7.

    I. Akkurt, A.M. El-Khayatt, Ann. Nucl. En. 51, 5–9 (2013)

    Article  Google Scholar 

  8. 8.

    D. A. Brown, M. B. Chadwick, R. Capote, A. C. Kahler, A. Trkov, M. W. Herman, A. A. Sonzogni, Y. Danon, A. D. Carlson, and others. Nucl Data Sheets, 148:1 – 142, (2018). Special Issue on Nuclear Reaction Data

  9. 9.

    E. Gallego, A. Lorente, H.R. Vega-Carrillo, Nucl. Tech. 168(2), 399–404 (2009)

    Article  Google Scholar 

  10. 10.

    R. Khelifi, Z. Idiri, L. Omari, M. Seghir, App. Rad. Isot. 51(1), 9–13 (1999)

    Article  Google Scholar 

  11. 11.

    G. Romanelli, M. Krzystyniak, R. Senesi, D. Raspino, J. Boxall, D. Pooley, S. Moorby, E. Schooneveld, N.J. Rhodes, C. Andreani, F. Fernandez-Alonso, Meas. Sci. Tech. 28(9), 095501 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    http://www.isis.stfc.ac.uk/Pages/VESUVIO.aspx, Last accessed on February (2021)

  13. 13.

    J. Mayers, G. Reiter, Meas. Sci. Tech. 23, 045902 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    M. Krzystyniak, G. Romanelli, M. Fabian, M. Gutmann, G. Festa, L. Arcidiacono, M. Gigg, K. Drużbicki, C. Andreani, R. Senesi, F. Fernandez-Alonso, J. Phys.: Conf. Ser. 1021(1), 012026 (2018)

    Google Scholar 

  15. 15.

    G. Romanelli, S. Rudić, M. Zanetti, C. Andreani, F. Fernandez-Alonso, G. Gorini, M. Krzystyniak, G. Škoro, Nucl. Inst. Meth. A 888, 88–95 (2018)

    ADS  Article  Google Scholar 

  16. 16.

    J.I. Robledo, J. Dawidowski, J.I. Márquez Damián, G. Škoro, C. Bovo, G. Romanelli, Nucl. Inst. Meth. A 969, 164096 (2020)

    Article  Google Scholar 

  17. 17.

    http://download.mantidproject.org/, Last accessed on February (2021)

  18. 18.

    G. Romanelli, B. Hewer, M. Krzystyniak, M. Gigg, R. Tolchenov, S. Mukhopadhyay, F. Fernandez-Alonso, J. Phys.: Conf. Ser. 1055, 012016 (2018)

    Google Scholar 

  19. 19.

    F. Fernandez-Alonso, D.L. Price (eds.), Neutron Scattering - Fundamentals (Academic Press, New York, 2013)

    Google Scholar 

  20. 20.

    G. Skoro, R. Bewley, S. Lilley, R. Ewings, G. Romanelli, M. Gutmann, R. Smith, S. Rudic, S. Ansell, J. Phys.: Conf. Ser. 1021, 012039 (2018)

    Google Scholar 

  21. 21.

    C. Andreani, A. Pietropaolo, R. Senesi, G. Gorini, M. Tardocchi, A. Bracco, N. Rhodes, E. Schooneveld, Nucl. Inst. Meth. A 481, 509–520 (2002)

    ADS  Article  Google Scholar 

  22. 22.

    A. Pietropaolo, C. Andreani, A. D’Angelo, R. Senesi, G. Gorini, S. Imberti, M. Tardocchi, N. Rhodes, E.S. Schooneveld, App. Phys. A: Mater. Sci. Process. 74, 189–190 (2002)

    ADS  Article  Google Scholar 

  23. 23.

    M. Tardocchi, A. Pietropaolo, C. Andreani, A. Bracco, A. D’Angelo, G. Gorini, S. Imberti, R. Senesi, N.J. Rhodes, E.M. Schooneveld, Nucl. Inst. Meth. A 526, 477–492 (2004)

    ADS  Article  Google Scholar 

  24. 24.

    C. Andreani, A. D’Angelo, G. Gorini, S. Imberti, A. Pietropaolo, N.J. Rhodes, E.M. Schooneveld, R. Senesi, M. Tardocchi, App. Phys. A: Mater. Sci. Process. 78, 903–913 (2004)

    ADS  Article  Google Scholar 

  25. 25.

    P. Ulpiani, G. Romanelli, D. Onorati, A. Parmentier, G. Festa, E. Schooneveld, C. Cazzaniga, L. Arcidiacono, C. Andreani, R. Senesi, Rev. Sci. Inst. 90(7), 073901 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    D. Onorati, G. Romanelli, P. Ulpiani, C. Cazzaniga, E. Preziosi, L. Arcidiacono, G. Festa, C. Andreani, R. Senesi, M.C. Morone, Nucl. Inst. Meth. A 969, 164012 (2020)

    Article  Google Scholar 

  27. 27.

    A. Pietropaolo, C. Andreani, M. Rebai, L. Giacomelli, G. Gorini, E.P. Cippo, M. Tardocchi, A. Fazzi, G.V. Rinati, C. Verona, M. Marinelli, E. Milani, C.D. Frost, E.M. Schooneveld, Europhys. Lett. 94, 62001 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    H. Postma, P. Schillebeeckx, in Encyclopedia of Analytical Chemistry, eds. by R.A. Meyers, R.A. Meyers (2009). https://doi.org/10.1002/9780470027318.a9070

  29. 29.

    C. Andreani, R. Senesi, M. Krzystyniak, G. Romanelli, and F. Fernandez-Alonso. Chapter 7 - Atomic quantum dynamics in materials research. In Felix Fernandez-Alonso and David L. Price, editors, Neutron Scattering - Applications in Biology, Chemistry, and Materials Science, volume 49 of Experimental Methods in the Physical Sciences, pages 403 – 457. Academic Press, (2017)

  30. 30.

    C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, F. Fernandez-Alonso, Adv. Phys. 66(1), 1–73 (2017)

    ADS  Article  Google Scholar 

  31. 31.

    J.M.F. Gunn, M. Warner, Z. Phys. B Condens. Matter 56(1), 13–20 (1984)

    ADS  Article  Google Scholar 

  32. 32.

    V.F. Sears, Phys. Rev. B 30, 44–51 (1984)

    ADS  Article  Google Scholar 

  33. 33.

    G.B. West, Phys. Rep. 18, 263–323 (1975)

    ADS  Article  Google Scholar 

  34. 34.

    C. Andreani, D. Colognesi, J. Mayers, G.F. Reiter, R. Senesi, Adv. Phys. 54(5), 377–469 (2005)

    ADS  Article  Google Scholar 

  35. 35.

    E.M. Schooneveld, J. Mayers, N.J. Rhodes, A. Pietropaolo, C. Andreani, R. Senesi, G. Gorini, E. Perelli-Cippo, M. Tardocchi, Rev. Sci. Inst. 77, 5103 (2006)

    Article  Google Scholar 

  36. 36.

    M. Krzystyniak, G. Romanelli, F. Fernandez-Alonso, Analyst 144, 3936–3941 (2019)

    ADS  Article  Google Scholar 

  37. 37.

    G. Romanelli, A. Liscio, R. Senesi, R. Zamboni, E. Treossi, F. Liscio, G. Giambastiani, V. Palermo, F. Fernandez-Alonso, C. Andreani, Carbon 108, 199–203 (2016)

    Article  Google Scholar 

  38. 38.

    C. Andreani, R. Senesi, M. Krzystyniak, G. Romanelli, F. Fernandez-Alonso, Riv. Nuovo Cimento 41, 291–340 (2018)

    Google Scholar 

  39. 39.

    J.I.M. Damian, J. Dawidowski, J.R. Granada, F. Cantargi, G. Romanelli, C. Helman, M. Krzystyniak, G. Skoro, D. Roubtsov, EPJ Web Conf. 239, 14001 (2020)

    Article  Google Scholar 

  40. 40.

    S.C. Capelli, G. Romanelli, J. Appl. Crystallogr. 52(5), 1233–1237 (2019)

    Article  Google Scholar 

  41. 41.

    F. Cantargi, J. Dawidowski, C. Helman, J.I.M. Damian, J.R. Granada, G. Romanelli, J.G. Cuello, G. Skoro, M. Krzystyniak, EPJ Web Conf. 239, 14002 (2020)

    Article  Google Scholar 

  42. 42.

    L.A.R. Palomino, J. Dawidowski, J.I.M. Damián, G.J. Cuello, G. Romanelli, M. Krzystyniak, Nucl. Inst. Meth. A 870, 84–89 (2017)

    ADS  Article  Google Scholar 

  43. 43.

    J. Dawidowski, L.A.R. Palomino, G. Romanelli, G.J. Cuello, J.I.M. Damián, J.I. Robledo, M. Krzystyniak, Nucl. Inst. Meth. A 989, 164948 (2021)

    Article  Google Scholar 

  44. 44.

    E. Yilmaz, H. Baltas, E. Kiris, İ. Ustabas, U. Cevik, A.M. El-Khayatt, Ann. Nucl. En. 38(10), 2204–2212 (2011)

    Article  Google Scholar 

  45. 45.

    D. E. Parks, J. R. Beyster, M. S. Nelkin, N. F. Wikner, Slow Neutron Scattering and Thermalization with Reactor Applications (W. A. Benjamin Inc, New York, 1970)

  46. 46.

    C. Andreani, G. Romanelli, R. Senesi, J. Phys. Chem. Lett. 7(12), 2216–2220 (2016)

    Article  Google Scholar 

  47. 47.

    R. Senesi, G. Romanelli, M.A. Adams, C. Andreani, Chem. Phys. 427, 111–116 (2013)

    Article  Google Scholar 

  48. 48.

    R. Senesi, D. Flammini, A.I. Kolesnikov, E.D. Murray, G. Galli, C. Andreani, J. Chem. Phys. 139(7), 074504 (2013)

    ADS  Article  Google Scholar 

  49. 49.

    G. Romanelli, R. Senesi, X. Zhang, K.P. Loh, C. Andreani, Probing the effects of 2d confinement on hydrogen dynamics in water and ice adsorbed in graphene oxide sponges. Phys. Chem. Chem. Phys. 17(47), 31680–31684 (2015)

    Article  Google Scholar 

  50. 50.

    C. Andreani, G. Romanelli, A. Parmentier, R. Senesi, A.I. Kolesnikov, H.Y. Ko, M.F.C. Andrade, R. Car, J. Phys. Chem. Lett. 11(21), 9461–9467 (2020)

    Article  Google Scholar 

  51. 51.

    G. Romanelli, M. Ceriotti, D.E. Manolopoulos, C. Pantalei, R. Senesi, C. Andreani, J. Phys. Chem. Lett. 4(19), 3251–3256 (2013)

    Article  Google Scholar 

  52. 52.

    A. Perrichon, E.J. Granhed, G. Romanelli, A. Piovano, A. Lindman, P. Hyldgaard, G. Wahnstrom, M. Karlsson, Chem. Mat. 32(7), 2824–2835 (2020)

    Article  Google Scholar 

  53. 53.

    G. Romanelli, F. Fernandez-Alonso, C. Andreani, J. Phys.: Conf. Ser. 571, 012003 (2014)

    Google Scholar 

  54. 54.

    H. Sawada, Y. Takéuchi, Z. Krist. - Cryst. Mater. 191(3–4), 161–171 (1990)

    Google Scholar 

  55. 55.

    N.K. Katyal, S.C. Ahluwalia, R. Parkash, Cem. Concr. Res. 29(11), 1857–1862 (1999)

    Article  Google Scholar 

  56. 56.

    A. Zezulova, T. Stanek, T. Opravil, Proc. Eng. 151, 42–49 (2016)

    Article  Google Scholar 

  57. 57.

    H.D. Megaw, Acta Crys. 5(4), 477–491 (1952)

    Article  Google Scholar 

  58. 58.

    W.R. Busing, H.A. Levy, J. Chem. Phys. 26(3), 563–568 (1957)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Regione Lazio (IR approved by Giunta Regionale n. G10795, 7 August 2019 published by BURL n. 69 27 August 2019), ISIS@MACH (I), and ISIS Neutron and Muon Source (UK) of Science and Technology Facilities Council (STFC); the financial support of Consiglio Nazionale delle Ricerche within CNR-STFC Agreement 2014-2020 (N 3420), concerning collaboration in scientific research at the ISIS Neutron and Muon Source (UK) of Science and Technology Facilities Council (STFC), is gratefully acknowledged. We thank the STFC Rutherford Appleton Laboratory for access to neutron beam facilities (VESUVIO, https://doi.org/10.5286/ISIS.E.RB2000164).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Romanelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martellucci, M., Romanelli, G., Valeri, S. et al. The neutron cross section of barite-enriched concrete for radioprotection shielding in the range 1 meV–1 keV. Eur. Phys. J. Plus 136, 259 (2021). https://doi.org/10.1140/epjp/s13360-021-01243-z

Download citation