Skip to main content
Log in

Existence and uniqueness of the weak solution for a space–velocity thermostatted kinetic theory framework

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper analyzes a new thermostatted kinetic theory framework for the modeling of an inhomogeneous complex system. Specifically, the role of the space and velocity variables is taken into account. The mathematical analysis refers to the existence and uniqueness of the weak solution of a related initial-boundary value problem. The main result is gained by employing methods of nonlinear analysis and in particular the Galerkin approximation method. Future research directions are outlined in the last section of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Bar-Yam, Dynamics of Complex Systems (CRC Press, Boca Raton, 2019).

    Book  MATH  Google Scholar 

  2. P. Cilliers, Complexity and Postmodernism: Understanding Complex Systems (Routledge, Milton Park, 2002).

    Book  Google Scholar 

  3. N. Ganguly, A. Deutsch, A. Mukherjee, Dynamics on and of Complex Networks-Applications to Biology, Computer Science, and the Social Sciences (Springer, Berlin, 2009).

    MATH  Google Scholar 

  4. A. Chauvière, L. Preziosi, C. Verdier, Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling (CRC Press, Boca Raton, 2010).

    Book  MATH  Google Scholar 

  5. L. Fusi, Macroscopic models for fibroproliferative disorders: a review. Math. Comput. Model. 50, 1474–1494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. L.F. Henderson, On the fluid mechanics of human crowd motion. Transp. Res. Rec. 8, 509–515 (1974)

    Article  Google Scholar 

  7. R.L. Hughes, The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988)

    Book  MATH  Google Scholar 

  9. C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 (Springer, Berlin, 2013).

    MATH  Google Scholar 

  10. V. Bagland, B. Wennberg, Y. Wondmagegne, Stationary states for the noncutoff Kac equation with a Gaussian thermostat. Nonlinearity 20, 583–604 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. V. Bagland, Well-posedness and large time behaviour for the non-cutoff Kac equation with a Gaussian thermostat. J. Stat. Phys. 138, 838–875 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. P. Degond, B. Wennberg, Mass and energy balance laws derived from high-field limits of thermostatted Boltzmann equations. Commun. Math. Sci. 5, 355–382 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Bianca, L. Brézin, Modeling the antigen recognition by B-cell and T-cell receptors through thermostatted kinetic theory methods. Int. J. Biomath. 10, 1750072 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kolev, Mathematical modeling of autoimmune diseases. Symmetry 12, 1457 (2020)

    Article  Google Scholar 

  15. M. Kolev, Mathematical analysis of an autoimmune diseases model: kinetic approach. Mathematics 7, 1024 (2020)

    Article  Google Scholar 

  16. M. Perez-Llanos, J.P. Pinasco, N. Saintier, Opinion attractiveness and its effect in opinion formation models. Phys. A 599, 125017 (2020)

    Article  MathSciNet  Google Scholar 

  17. G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, Fokker–Planck equations in the modeling of socio-economic phenomena. Math. Models Methods Appl. Sci. 27, 115–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Boudin, F. Salvariani, A kinetic approach to the study of opinion formation. ESAIM Math. Model. Numer. Anal. 43, 507–522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Dring, L. Pareschi, G. Toscani, Kinetic models for optimal control of wealth inequalities. Eur. Phys. J. B 91, 265 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Dogbe, On the modelling of crowd dynamics by generalized kinetic models. J. Math. Anal. Appl. 387, 512–532 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Bianca, C. Mogno, A thermostatted kinetic theory model for event-driven pedestrian dynamics. Eur. Phys. J. Plus 133, 213 (2018)

    Article  Google Scholar 

  22. J.A. Carrillo, M.R. D’Orsogna, V. Panferov, Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2, 363–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Bianca, L. Fermo, Bifurcation diagrams for the moments of a kinetic type model of keloid-immune system competition. Comput. Math. with Appl. 61, 277–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Bianca, J. Riposo, Mimic therapeutic actions against keloid by thermostatted kinetic theory methods. Eur. Phys. J. Plus 130, 159 (2015)

    Article  Google Scholar 

  25. M. Dalla Via, C. Bianca, I. El Abbassi, A.-M. Darcherif, On the modeling of a solar, wind and fossil fuel energy source by means of the thermostatted kinetic theory. Eur. Phys. J. Plus 135, 198 (2020)

    Article  MATH  Google Scholar 

  26. J.K. Goeree, C.A. Holt, Stochastic game theory: for playing games, not just for doing theory. Proc. Natl. Acad. Sci. 96, 10564–10567 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Perea, A. Predtetchinski, An epistemic approach to stochastic games. Int. J. Game Theory 48, 181–203 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. O.G. Jepps, L. Rondoni, Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition. J. Phys. A: Math. Theor. 43, 133001 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. C. Bianca, Existence of stationary solutions in kinetic models with Gaussian thermostats. Math. Methods Appl. Sci. 36, 1768–1775 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. T. Hillen, Hyperbolic models for chemosensitive movement. Math. Models Methods Appl. Sci. 12, 1007–1034 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. H.G. Othmer, T. Hillen, The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Bianca, C. Dogbe, Kinetic models coupled with Gaussian thermostats: macroscopic frameworks. Nonlinearity 27, 2771 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. Bellouquid, A. Chouhad, Kinetic models of chemotaxis towards the diffusive limit: asymptotic analysis. Math. Methods Appl. Sci. 39, 3136–3151 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. L.L. Bonilla, J.S. Soler, High-field limit of the Vlasov–Poisson–Fokker–Planck system: a comparison of different perturbation methods. Math. Models Methods Appl. Sci. 11, 1457–1468 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Cercignani, M.I. Gamba, C.D. Levermore, High field approximations to a Boltzmann–Poisson system and boundary conditions in a semiconductor. Appl. Math. Lett. 10, 111–117 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Goudon, J. Nieto, J. Poupaud, J. Soler, Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 213, 418–442 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. J. Nieto, F. Poupaud, J. Soler, High-field limit for the Vlasov–Poisson–Fokker–Planck system. Arch. Ration. Mech. Anal. 158, 29–59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. L.C. Evans, Partial Differential Equations, 2nd edn. (Springer, Berlin, 2010).

    MATH  Google Scholar 

  40. R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, vol. 49 (American Mathematical Society, Providence, 2013).

    Book  Google Scholar 

  41. W. Walter, Differential and Integral Inequalities, vol. 55 (Springer, Berlin, 2012).

    Google Scholar 

  42. S.C. Parés, Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43, 245–296 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems (Springer, Berlin, 2011).

    Book  MATH  Google Scholar 

  44. J.L. Lions, On some questions in boundary value problems of mathematical physics. North-Holland Math. Stud. 30, 284–346 (1978)

    Article  MathSciNet  Google Scholar 

  45. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (Tata McGraw-Hill Education, New York, 1955).

    MATH  Google Scholar 

  46. C. Bianca, M. Menale, On the convergence towards nonequilibrium stationary states in thermostatted kinetic models. Math. Methods Appl. Sci. 42, 6624–6634 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. C. Bianca, M. Menale, On the interaction domain reconstruction in the weighted thermostatted kinetic framework. Eur. Phys. J. Plus 134, 143 (2019)

    Article  MATH  Google Scholar 

  48. N. Crouseilles, M. Lemou, S.V. Raghurama Rao, A. Ruhi, M. Sekhar, Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinet. Relat. Models 9, 51–74 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.A. Carrillo, B. Yan, An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis. Multiscale Model. Simul. 11, 336–361 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Chertock, C. Tan, B. Yan, An asymptotic preserving scheme for kinetic models with singular limit. Kinet. Relat. Models 11, 735–756 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Bianca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianca, C., Menale, M. Existence and uniqueness of the weak solution for a space–velocity thermostatted kinetic theory framework. Eur. Phys. J. Plus 136, 243 (2021). https://doi.org/10.1140/epjp/s13360-021-01233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01233-1

Navigation