Skip to main content
Log in

Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, we present a unique and simply designed surface plasmon resonance-based PCF biosensor that shows high sensing performance. The numerical technique finite element method is utilized to evaluate the fiber's guiding characteristics. Our design has a thin layer of gold (Au) surrounding the fiber, which is a stable plasmonic material. The strategic arrangement of the circular-shaped airholes inside the fiber enhances the overall performance of the sensor. After precise investigation of the various fiber parameters, the maximum amplitude sensitivity was found to be 3.35 × 103 RIU−1 for x-polarization and 5.00 × 103 RIU−1 for y-polarization in a sensing range of refractive index 1.33–1.41. The sensor exhibited a maximum birefringence of 2.23 × 10–3 and a maximum wavelength sensitivity of 3.00 × 104 nm/RIU and 3.25 × 104 nm/RIU for x- and y-polarization, respectively. The sensor resolution (amplitude) is found to be 2.98 × 10–6 for x-polarization and 2.00 × 10–6 for y-polarization, whereas the sensor resolution (wavelength) is 3.33 × 10–6 and 3.08 × 10–6 for x-polarization and y-polarization, respectively. Moreover, we obtained a high figure of merit of 4.48 × 102 RIU−1 for x-polarization and 4.44 × 102 RIU−1 for y-polarization. For its simplicity in design and high performance, this biosensor has a wide range of applications in the field of sensing unknown biomolecules and organic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003). https://doi.org/10.1007/s00216-003-2101-0

    Article  Google Scholar 

  2. R. Otupiri, E.K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photon. J. 6, 1–11 (2014). https://doi.org/10.1109/JPHOT.2014.2335716

    Article  Google Scholar 

  3. J. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, F. Chávez, Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors. 14, 18701–18710 (2014). https://doi.org/10.3390/s141018701

    Article  Google Scholar 

  4. E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J. V. Oliver. Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012).

  5. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji, S.H. Yun, F.R.M. Adikan, Photonic crystal fiber based plasmonic sensors. Sens. Actuat. B Chem. 243, 311–325 (2017). https://doi.org/10.1016/j.snb.2016.11.113

    Article  Google Scholar 

  6. B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuat. 4, 299–304 (1983). https://doi.org/10.1016/0250-6874(83)85036-7

    Article  Google Scholar 

  7. M. Hautakorpi, M. Mattinen, H. Ludvigsen, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16, 8427 (2008). https://doi.org/10.1364/OE.16.008427

    Article  ADS  Google Scholar 

  8. A. Hassani, M. Skorobogatiy, Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B. 24, 1423 (2007). https://doi.org/10.1364/JOSAB.24.001423

    Article  ADS  Google Scholar 

  9. A. Khaleque, H.T. Hattori, Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber. J. Appl. Phys. 118, 143101 (2015). https://doi.org/10.1063/1.4932659

    Article  ADS  Google Scholar 

  10. W. Qin, S. Li, Y. Yao, X. Xin, J. Xue, Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Lasers Eng. 58, 1–8 (2014). https://doi.org/10.1016/j.optlaseng.2014.01.003

    Article  Google Scholar 

  11. Md.S. Islam, M.R. Islam, J. Sultana, A. Dinovitser, B.W.-H. Ng, D. Abbott, Exposed-core localized surface plasmon resonance biosensor. J. Opt. Soc. Am. B. 36, 2306 (2019). https://doi.org/10.1364/josab.36.002306

    Article  ADS  Google Scholar 

  12. Md.M. Rahman, F.A. Mou, M.I.H. Bhuiyan, M.R. Islam, Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. Bio-Sens. Res. 29, 100356 (2020). https://doi.org/10.1016/j.sbsr.2020.100356

    Article  Google Scholar 

  13. F.A. Mou, Md.M. Rahman, M.R. Islam, M.I.H. Bhuiyan, Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens. Bio-Sens. Res. 29, 100346 (2020). https://doi.org/10.1016/j.sbsr.2020.100346

    Article  Google Scholar 

  14. M.R. Islam, Md.F. Kabir, KMd.A. Talha, Md.S. Islam, A novel hollow core terahertz refractometric sensor. Sens. Bio-Sens. Res. 25, 100295 (2019). https://doi.org/10.1016/j.sbsr.2019.100295

    Article  Google Scholar 

  15. J. Sultana, Md.S. Islam, K. Ahmed, A. Dinovitser, B.W.-H. Ng, D. Abbott, Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57, 2426 (2018). https://doi.org/10.1364/ao.57.002426

    Article  ADS  Google Scholar 

  16. Md.S. Islam, J. Sultana, A. Dinovitser, K. Ahmed, M.R. Islam, M. Faisal, B.W.-H. Ng, D. Abbott, A novel Zeonex based photonic sensor for alcohol detection in beverages. ICTP 2017, 114–118 (2017). https://doi.org/10.1109/ICTP.2017.8285905

    Article  Google Scholar 

  17. S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48, 142 (2016). https://doi.org/10.1007/s11082-016-0414-4

    Article  Google Scholar 

  18. A.A. Rifat, F. haider, R. Ahmed, G.A. Mahdiraji, F.R. Mahamd Adikan, A.E. Miroshnichenko, Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Let. 43, 891 (2018). https://doi.org/10.1364/OL.43.000891.

  19. S. Sharmin, A. Bosu, S. Akter, A simple gold-coated photonic crystal fiber based plasmonic biosensor . Int. Conf. Adv. Electr. Electron. Eng. 2018, 1–4 (2018). https://doi.org/10.1109/ICAEEE.2018.8643003

    Article  Google Scholar 

  20. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, F. Adikan, photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors. 15, 11499–11510 (2015). https://doi.org/10.3390/s150511499

    Article  Google Scholar 

  21. A.A. Rifat, R. Ahmed, G.A. Mahdiraji, F.R.M. Adikan, Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 17, 2776–2783 (2017). https://doi.org/10.1109/JSEN.2017.2677473

    Article  ADS  Google Scholar 

  22. S. Chu, K. Nakkeeran, A.M. Abobaker, S.S. Aphale, P.R. Babu, K. Senthilnathan, Design and analysis of surface-plasmon-resonance-based photonic quasi-crystal fiber biosensor for high-refractive-index liquid analytes. IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019). https://doi.org/10.1109/JSTQE.2018.2873481

    Article  Google Scholar 

  23. M.S. Islam, C.M.B. Cordeiro, J. Sultana, R.A. Aoni, S. Feng, R. Ahmed, M. Dorraki, A. Dinovitser, B.W.H. Ng, D. Abbott, A hi-bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access. 7, 79085–79094 (2019). https://doi.org/10.1109/ACCESS.2019.2922663

    Article  Google Scholar 

  24. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205 (1965). https://doi.org/10.1364/JOSA.55.001205

    Article  ADS  Google Scholar 

  25. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M.L. de la Chapelle, Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B. 71, 085416 (2005). https://doi.org/10.1103/PhysRevB.71.085416

    Article  ADS  Google Scholar 

  26. J.R. DeVore, Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–419 (1951). https://doi.org/10.1364/JOSA.41.000416

    Article  ADS  Google Scholar 

  27. M.R. Islam, Md.A. Jamil, M.-U. Zaman, S.A.H. Ahsan, M.K. Pulak, F. Mehjabin, M.M.I. Khan, J.A. Chowdhury, M. Islam, Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss. Optik. 221, 165311 (2020). https://doi.org/10.1016/j.ijleo.2020.165311

    Article  ADS  Google Scholar 

  28. M. Rakibul Islam, M.M.I. Khan, F. Mehjabin, J. Alam Chowdhury, M. Islam, Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys. 19, 103501 (2020). https://doi.org/10.1016/j.rinp.2020.103501.

  29. M. Rakibul Islam, A.N.M. Iftekher, K. Rakibul Hasan, Md.J. Nayen, S. bin Islam, Dual-polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor. Appl. Opt. 59 (2020) 3296. https://doi.org/https://doi.org/10.1364/ao.383352.

  30. F. Chiavaioli, C.A.J. Gouveia, P.A.S. Jorge, F. Baldini, Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors, Biosensors. 7 (2017). https://doi.org/10.3390/bios7020023.

  31. F. Haider, R.A. Aoni, R. Ahmed, M.S. Islam, A.E. Miroshnichenko, Propagation controlled photonic crystal fiber-based plasmonic sensor via scaled-down approach. IEEE Sens. J. 19, 962–969 (2019). https://doi.org/10.1109/JSEN.2018.2880161

    Article  ADS  Google Scholar 

  32. Md.S. Islam, J. Sultana, Ahmmed.A. Rifat, R. Ahmed, A. Dinovitser, B.W.-H. Ng, H. Ebendorff-Heidepriem, D. Abbott, Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express. 26, 30347 (2018). https://doi.org/10.1364/oe.26.030347.

  33. C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, P.K. Chu, Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor. J. Mod. Opt. 63, 1189–1195 (2016). https://doi.org/10.1080/09500340.2015.1135257

    Article  ADS  Google Scholar 

  34. D. Li, W. Zhang, H. Liu, J. Hu, G. Zhou, High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photon. J. 9, 1–8 (2017). https://doi.org/10.1109/JPHOT.2017.2687121

    Article  Google Scholar 

  35. M.A. Mollah, A.K. Paul, S.M.A. Razzak, Dual polarized plasmonic refractive index sensor based on photonic crystal fiber, in: 2018 10th International conference on electrical and computer engineering (ICECE), 2018: pp. 73–76. https://doi.org/10.1109/ICECE.2018.8636749.

  36. Md.S. Islam, J. Sultana, R. Ahmmed Aoni, Md.S. Habib, A. Dinovitser, B.W.-H. Ng, D. Abbott, Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Opt. Lett. 44, 1134 (2019). https://doi.org/10.1364/ol.44.001134.

  37. A.K. Paul, A.K. Sarkar, S.M.A. Razzak, Graphene coated photonic crystal fiber biosensor based on surface plasmon resonance, in: 2017 IEEE region 10 Humanitarian Technology Conference (R10-HTC), 2017, pp. 856–859. https://doi.org/10.1109/R10-HTC.2017.8289088.

  38. Md. Aminul Islam, M. Rakibul Islam, Md. Moinul Islam Khan, J.A. Chowdhury, F. Mehjabin, M. Islam, Highly birefringent slotted core photonic crystal fiber for thz wave propagation. Phys Wave Phen 28, 58–67 (2020). https://doi.org/10.3103/S1541308X20010021.

  39. M.S. Islam, J. Sultana, K. Ahmed, M.R. Islam, A. Dinovitser, B.W.H. Ng, D. Abbott, A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18, 575–582 (2018). https://doi.org/10.1109/JSEN.2017.2775642

    Article  ADS  Google Scholar 

  40. Md.A. Islam, M.R. Islam, Z. Tasnim, R. Islam, R.L. Khan, E. Moazzam, Low-loss and dispersion-flattened octagonal porous core PCF for Terahertz transmission applications, Iranian Journal of Science and Technology. Trans. Electr. Eng. (2020). https://doi.org/10.1007/s40998-020-00337-1

    Article  Google Scholar 

  41. X. Zhang, J. Chen, Á. González-Vila, F. Liu, Y. Liu, K. Li, T. Guo, Twist sensor based on surface plasmon resonance excitation using two spectral combs in one tilted fiber Bragg grating. J. Opt. Soc. Am. B. 36, 1176 (2019). https://doi.org/10.1364/josab.36.001176

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rakibul Islam.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Jamil, M.A., Ahsan, S.A.H. et al. Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity. Eur. Phys. J. Plus 136, 238 (2021). https://doi.org/10.1140/epjp/s13360-021-01220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01220-6

Navigation