Skip to main content
Log in

Compact objects in f(RT) gravity with Finch–Skea geometry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We obtain a class of anisotropic spherically symmetric relativistic solutions of compact objects in hydrostatic equilibrium in the \(f(R,T) =R+2\chi T\) modified gravity, where R is the Ricci scalar, T is the trace of the energy momentum tensor and \(\chi \) is a dimensionless coupling parameter. The relativistic solutions are employed to obtain realistic stellar models for compact stars, and the physical quantities, energy density, anisotropy parameter, radial and tangential pressures and TOV equations are studied numerically for different model parameters. We construct anisotropic stellar models with modified Finch–Skea ansatz in the f(RT)-theory of gravity for known mass and radius which obey all the conditions for a physically realistic star. The equation of state for the interior matter is also predicted which is of the form \(p= f(\rho )\). The stellar models satisfy causality conditions, and the adiabatic index is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  2. M. Sami, Curr. Sci. 97, 887 (2009)

    Google Scholar 

  3. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  4. P.J.E. Peebles, A. Vilenkin, Phys. Rev. D 59, 063505 (1999)

    Article  ADS  Google Scholar 

  5. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  6. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi, Phys. Lett. B 639, 135 (2006)

    Article  ADS  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005 (2006)

    Article  ADS  Google Scholar 

  8. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rept. 692, 1 (2017)

    Article  ADS  Google Scholar 

  9. S. Nojiri, S.D. Odintsov, Phys. Rept. 505, 59 (2011)

    Article  ADS  Google Scholar 

  10. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  11. K. Uddin, J.E. Lidsey, R. Tavakol, Gen. Relativ. Gravit. 41, 2725 (2009)

    Article  ADS  Google Scholar 

  12. E.V. Linder, Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  13. S. Capozziello, M. De Laurentis, Phys. Rev. 509, 167 (2011)

    Google Scholar 

  14. K.S. Stelle, Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Phys. Rev. Lett. 108, 031101 (2012)

    Article  ADS  Google Scholar 

  16. H. Weyl, Ann. Phys. 59, 101 (1919)

    Article  Google Scholar 

  17. A.S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1923)

    MATH  Google Scholar 

  18. H.A. Buchdhal, Mon. Not. R. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  19. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  20. H.-J. Schmidt, Int. J. Geom. Methods Mod. Phys. 4, 209 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Capozziello, M. De Laurentis, I. De Martino, M. Formisano, S.D. Odintsov, Phys. Rev. D 85, 044022 (2012)

    Article  ADS  Google Scholar 

  22. S. Capozziello, M. De Laurentis, S.D. Odintsov, A. Stabile, Phys. Rev. D 83, 064004 (2011)

    Article  ADS  Google Scholar 

  23. A.V. Astashenok, S. Capozziello, S.D. Odintsov, JCAP 1312, 040 (2013)

    Article  ADS  Google Scholar 

  24. A.V. Astashenok, S. Capozziello, S.D. Odintsov, V.K. Oikonomou, (n.d.) arXiv:2008.10884 [gr-qc]

  25. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  26. S. Chakraborty, Gen. Rel. Grav. 45, 2039 (2013)

    Article  ADS  Google Scholar 

  27. H. Shabani, M. Farhoudi, Phys. Rev. D 90, 044031 (2014)

    Article  ADS  Google Scholar 

  28. M. Jamil, D. Momeni, R. Myrzakulov, Chin. Phys. Lett. 29, 109801 (2012)

    Article  Google Scholar 

  29. P.H.R.S. Moraes, Eur. Phys. J. C 75, 168 (2015)

    Article  ADS  Google Scholar 

  30. D. Momeni, R. Myrzakulov, E. G\(\ddot{u}\)dekli, Int. J. Geom. Methods Mod. Phys. 12, 1550101 (2015)

  31. P.H.R.S. Moraes, J.D.V. Arbanil, M. Malheiro, J. Cosmol. Astropart. Phys. 06, 005 (2016)

    Article  ADS  Google Scholar 

  32. A. Das, S. Ghosh, B.K. Guha, S. Das, F. Rahaman, S. Ray, Phys. Rev. D 95, 124011 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Deb, F. Rahaman, S. Ray, B.K. Guha, J. Cosmol. Astropart. Phys. 03, 044 (2018)

    Article  ADS  Google Scholar 

  34. M. Sharif, A. Siddiqa, Int. J. Mod. Phys. D 27, 1850065 (2018)

    Article  ADS  Google Scholar 

  35. S. Mukherjee, B.C. Paul, N. Dadhich, Class. & Quantum Grav. 14, 3475 (1997)

    Article  ADS  Google Scholar 

  36. P.K. Chattopadhyay, R. Deb, B.C. Paul, Int. J. Mod. Phys. D 21, 1250071 (2012)

    Article  ADS  Google Scholar 

  37. P.K. Chattopadhyay, B.C. Paul, Pramana. J. Phys. 74, 513 (2010)

    Google Scholar 

  38. B.C. Paul, R. Deb, Astrophys. Space Sci. 354, 421 (2014)

    Article  ADS  Google Scholar 

  39. H.L. Duorah, R. Ray, Class. Quantum Grav. 4, 1691 (1987)

    Article  ADS  Google Scholar 

  40. M.R. Finch, J.E.F. Skea, Class. Quantum Grav. 6, 467 (1989)

    Article  ADS  Google Scholar 

  41. M. Kalam et al., Int. J. Theor. Phys. 52, 3319 (2013)

    Article  Google Scholar 

  42. A. Banerjee et al., Gen. Relativ. Gravit. 45, 717 (2013)

    Article  ADS  Google Scholar 

  43. S. Hansraj et al., Int. J. Mod. Phys. D 15, 1311 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. B. Chilambwe et al., Eur. Phys. J. Plus 130, 19 (2015)

    Article  Google Scholar 

  45. B.C. Paul, S. Dey, Astrophys. Space Sci. 363, 220 (2018)

    Article  ADS  Google Scholar 

  46. S. Dey, B.C. Paul, Class. Quantum Grav. 37, 7 (2020)

    Article  Google Scholar 

  47. R. Ruderman, Astron. Astrophys. 10, 427 (1972)

    Article  Google Scholar 

  48. V. Canuto, Annu. Rev. Astron. Astrophys. 12, 167 (1974)

    Article  ADS  Google Scholar 

  49. M.C. Durgapal, R. Bannerji, Phys. Rev. D 27, 328 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  50. S. Thirukkanesh, S.D. Maharaj, Class. Quantum Grav. 23, 2697 (2006)

    Article  ADS  Google Scholar 

  51. R. Maartens, M.S. Maharaj, J. Math. Phys. 31, 151 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  52. M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  53. Herrera et al., Phys. Lett. A 165, 1027 (1959)

    Google Scholar 

  54. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  55. H. Abreu, H. Hernandez, L.A. Nunez, Class. Quantum Grav. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  56. H. Bondi, Proc. R. Soc. Lond. A 281, 39 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  57. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

    Article  ADS  Google Scholar 

  58. M.K. Mak, P.N. Dobson, T. Harko, Europhys. Lett. 55, 310 (2001)

    Article  ADS  Google Scholar 

  59. K. Jotania, R. Tikekar, Int. J. Mod. Phys. D 15, 1175 (2006)

    Article  ADS  Google Scholar 

  60. J. Antoniadis et al., Science 340, 1233232 (2013)

    Article  Google Scholar 

  61. Z. Roupas, G.G.L. Nashed, Eur. Phys. J C 80, 905 (2020)

    Article  ADS  Google Scholar 

  62. F. Özel et al., Astro. Phys. J. 820, 28 (2016)

    Article  ADS  Google Scholar 

  63. N.A. Webb, D. Barret, Astro. Phy. J 671(1), 727 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SD is thankful to UGC, New Delhi, for financial support. AC would like to thank University of North Bengal for awarding Senior Research Fellowship. The authors would like to thank IUCAA Resource Center, NBU, for extending research facilities. BCP would like to thank DST-SERB Govt. of India (File No.: EMR/2016/005734) for a project. We are thankful to the anonymous referee for constructive criticisms and suggestions, for presenting the paper in its current form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Chanda, A. & Paul, B.C. Compact objects in f(RT) gravity with Finch–Skea geometry. Eur. Phys. J. Plus 136, 228 (2021). https://doi.org/10.1140/epjp/s13360-021-01173-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01173-w

Navigation