Skip to main content
Log in

Fast 2-impulse non-Keplerian orbit transfer using the Theory of Functional Connections

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study applies a new approach, the Theory of Functional Connections (TFC), to solve the two-point boundary-value problem (TPBVP) in non-Keplerian orbit transfer. The perturbations considered are drag, solar radiation pressure, higher-order gravitational potential harmonic terms, and multiple bodies. The proposed approach is applied to Earth-to-Moon transfers and obtains exact boundary condition satisfaction and with very fast convergence. Thanks to this highly efficient approach, perturbed pork-chop plots of Earth-to-Moon transfers are generated, and individual analyses on the transfers’ parameters are easily done at low computational costs. The minimum fuel analysis is provided in terms of the time of flight, thrust application points, and relative geometry of the Moon and Sun. The transfer costs obtained are in agreement with the literature’s best solutions and in some cases are even slightly better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Assadian, S.H. Pourtakdoust, Multiobjective genetic optimization of earth-moon trajectories in the restricted four-body problem. Adv. Space Res. 45(3), 398–409 (2010)

    Article  ADS  Google Scholar 

  2. E.A. Belbruno, J.K. Miller, Sun-perturbed earth-to-moon transfers with ballistic capture. J. Guid. Control Dyn. 16(4), 770–775 (1993)

    Article  ADS  Google Scholar 

  3. J. Bradbury, R. Frostig, P. Hawkins, M. James Johnson, C. Leary, D. Maclaurin, S. Wanderman-Milne, JAX: composable transformations of Python+NumPy programs, (2018)

  4. C. Circi, P. Teofilatto, On the dynamics of weak stability boundary lunar transfers. Celestial Mech. Dyn. Astron. 79, 41–72 (2001)

    Article  ADS  Google Scholar 

  5. S. Da Silva Fernandes, C.M.P. Marinho, Sun influence on two-impulsive Earth-to-Moon transfers. In Proceedings of the 22nd International Symposium on Space Flight Dynamics, (2011)

  6. S. da Silva Fernandes, C. Maranhão, P. Marinho, Optimal two-impulse trajectories with moderate flight time for earth-moon missions. Math. Prob. Eng. 2012(971983) (2012)

  7. F. Diacu, Poincaré and the three-body problem. by june barrow-green. Historia Math. 26(2), 175–178 (1999)

  8. L.A. Gagg, Filho, Sandro da Silva Fernandes, A method based on jacobi integral variational equation for computing earth-moon trajectories in the four-body problem. Acta Astron. 165, 312–330 (2019)

    Article  Google Scholar 

  9. R. Frostig, M. Johnson, C. Leary, Compiling machine learning programs via high-level tracing. In SysML Conference, (2018)

  10. R. Furfaro, D. Mortari, Least-squares Solution of a Class of Optimal Space Guidance Problems via Theory of Connections. ACTA Astronautica, (2019)

  11. M. Guelman, Earth-to-moon transfer with a limited power engine. J. Guid. Control Dyn. 18(5), 1133–1138 (1995)

    Article  ADS  Google Scholar 

  12. A.L. Herman, B.A. Conway, Optimal, low-thrust, earth-moon orbit transfer. J. Guid. Control Dyn. 21(1), 141–147 (1998)

    Article  ADS  Google Scholar 

  13. P. Holmes, Poincaré, celestial mechanics, dynamical-systems theory and “chaos”. Phys. Rep. 193(3), 137–163 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Johnston, C. Leake, Y. Efendiev, D. Mortari, Selected applications of the theory of connections: A technique for analytical constraint embedding. Mathematics 7(6) (2019)

  15. H. Johnston, D. Mortari. Least-squares solutions of boundary-value problems in hybrid systems, (2019)

  16. H. Johnston, E. Schiassi, R. Furfaro, D. Mortari, Fuel-efficient powered descent guidance on large planetary bodies via theory of functional connections, (2020)

  17. C. Lanczos, Applied Analysis (Dover Publications Inc, New York, 1957), p. 504

    Google Scholar 

  18. C. Leake, H. Johnston, And Daniele Mortari (Theory, proofs, and application in partial differential equations, The Multivariate Theory of Functional Connections, 2020)

  19. C. Leake, H. Johnston, L. Smith, D. Mortari, Analytically embedding differential equation constraints into least squares support vector machines using the theory of functional connections. Mach. Learn. Knowl. Ext. 1(4), 1058–1083 (2019)

    Article  Google Scholar 

  20. C. Leake, D. Mortari, Deep theory of functional connections: a new method for estimating the solutions of partial differential equations. Mach. Learn. Knowl. Ext. 2(1), 37–55 (2020)

    Article  Google Scholar 

  21. H. Lei, X. Bo, Y. Sun, Earth-moon low energy trajectory optimization in the real system. Adv. Space Res. 51(5), 917–929 (2013)

    Article  ADS  Google Scholar 

  22. T. Mai, D. Mortari, Theory of functional connections applied to nonlinear programming under equality constraints, 2019. Paper AAS 19-675 of the 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, ME, August 11-15, (2019)

  23. G. Mengali, A.A. Quarta, Optimization of biimpulsive trajectories in the earth-moon restricted three-body system. J. Guid. Control Dyn. 28(2), 209–216 (2005)

    Article  ADS  Google Scholar 

  24. G. Mingotti, F. Topputo. Ways to the Moon: a survey. In Paper AAS 11–283, 21th AAS/AIAA Space Flight Mechanics Meeting, (2011)

  25. G. Mingotti, F. Topputo, F. Bernelli-Zazzera, Efficient invariant-manifold, low-thrust planar trajectories to the moon. Commun. Nonlinear Sci. Numer. Simul. 17(2), 817–831 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Moore, S. Ober-Blöbaum, J.E. Marsden, Trajectory design combining invariant manifolds with discrete mechanics and optimal control. J. Guid. Control Dyn. 35(5), 1507–1525 (2012)

    Article  ADS  Google Scholar 

  27. D. Mortari, Least-squares solution of linear differential equations. MDPI Math. 5(4) (2017)

  28. D. Mortari, The theory of connections: connecting points. MDPI Math. 5(4) (2017)

  29. D. Mortari, H. Johnston, L. Smith, High accuracy least-squares solutions of nonlinear differential equations. J. Comput. Appl. Math. 352, 293–307 (2019)

    Article  MathSciNet  Google Scholar 

  30. D. Mortari, C. Leake, The multivariate theory of connections. MDPI Math. 7(3) (2019)

  31. K. Onozaki, H. Yoshimura, S.D. Ross, Tube dynamics and low energy Earth-Moon transfers in the 4-body system (Adv, Space Res, 2017)

    Book  Google Scholar 

  32. K. Oshima, F. Topputo, T. Yanao, Low energy transfers to the moon with long transfer time. Celestial Mech. Dyn. Astron. 131(4) (2019)

  33. K. Oshima, F. Topputo, S. Campagnola, T. Yanao, Analysis of medium-energy transfers to the Moon (Celestial Mech. Dyn, Astron, 2017)

    Book  Google Scholar 

  34. L. Peng, Y. Wang, G. Dai, Y. Chang, F. Chen, Optimization of the earth-moon low energy transfer with differential evolution based on uniform design. In IEEE Congress on Evolutionary Computation, pp 1–8, (2010)

  35. D. Pérez-Palau, R. Epenoy, Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control. Celestial Mech. Dyn. Astron. 130(2), 21 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. H.J. Pernicka, D.P. Scarberry, S.M. Marsh, T.H. Sweetser, A search for low delta-v earth-to-moon trajectories. J. Astron. Sci. 42, 77 (1995)

    Google Scholar 

  37. E. Perozzi, A.D. Salvo, Novel spaceways for reaching the moon: an assessment for exploration. Celestial Mech. Dyn. Astron. 102, 207–218 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. Henri Poincaré, Sur les équations de la dynamique et le probleme des trois corps. Acta Math 13(1), 270 (1890)

    MATH  Google Scholar 

  39. A.F.B.A. Prado, R. Broucke, Transfer orbits in restricted problem. J. Guid. Control Dyn. 18(3), 593 (1995)

    Article  ADS  Google Scholar 

  40. Y. Qi, X. Shijie, Optimal earth-moon transfers using lunar gravity assist in the restricted four-body problem. Acta Astron. 134, 106–120 (2017)

    Article  Google Scholar 

  41. C. Simó, G. Gómez, À. Jorba, J. Masdemont, The bicircular model near the triangular libration points of the rtbp. In From Newton to chaos, pages 343–370. Springer, New York (1995)

  42. T. H. Sweetser, An estimate of the global minimum dv needed for earth-moon transfer. In sfm, pages 111–120, (1991)

  43. R. Keith, Symon Mechanics, 1st edn. (Addison-Wesley Inc., Boston, 1953)

    Google Scholar 

  44. F. Topputo, M. Vasile, F. Bernelli-Zazzera, Earth-to-moon low energy transfers targeting l1 hyperbolic transit orbits. Ann. N. Y. Acad. Sci. 1065, 55–76 (2005)

    Article  ADS  Google Scholar 

  45. Francesco Topputo, On optimal two-impulse earth-moon transfers in a four-body model. Celestial Mech. Dyn. Astron. 117(3), 279–313 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. B.F. Villac, D.J. Scheeres, Escaping trajectories in the hill three-body problem and applications. J. Guid. Control Dyn. 26(2), 224–232 (2003)

    Article  ADS  Google Scholar 

  47. K. Wright, Chebyshev Collocation Methods for Ordinary Differential Equations. Comput. J. 6(1), 358–365 (1964)

    Article  MathSciNet  Google Scholar 

  48. Kazuyuki Yagasaki, Computation of low energy earth-to-moon transfers with moderate flight time. Phys. D Nonlinear Phenom. 197(3), 313–331 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  49. K. Yagasaki, Sun-perturbed earth-to-moon transfers with low energy and moderate flight time. Celestial Mech. Dyn. Astron. 90, 197 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  50. Hiroshi Yamakawa, Jun’ichiro Kawaguchi, Nobuaki Ishii, Hiroki Matsuo, A numerical study of gravitational capture orbit in the earth-moon system. Spaceflight Mech. 1992, 1113–1132 (1992)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPESP - São Paulo Research Foundation through grants 2019/18480-5, 2018/07377-6 and 2016/24561-0 and by the NASA Space Technology Research Fellowship, Leake [NSTRF 2019] Grant #: 80NSSC19K1152 and Johnston [NSTRF 2019] Grant #: 80NSSC19K1149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan K. de Almeida Junior.

Additional information

A previous version was presented as: De Almeida Junior, A.K., Johnston, H., Leake, C., and Mortari, D. “Evaluation of transfer costs in the Earth/Moon system using the Theory of Functional Connections,” AAS 20-596, Astrodynamics Specialist Conference, August 9-12, Lake Tahoe, CA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Junior, A.K., Johnston, H., Leake, C. et al. Fast 2-impulse non-Keplerian orbit transfer using the Theory of Functional Connections. Eur. Phys. J. Plus 136, 223 (2021). https://doi.org/10.1140/epjp/s13360-021-01151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01151-2

Navigation