Skip to main content
Log in

Synthesis, structure, mechanical and radiation shielding features of 50SiO2–(48 + X) Na2B4O7–(2 − X) MnO2 glasses

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A novel glass system with the composition 50SiO2–(48 + X) Na2B4O7–(2 − X) MnO2 (0 ≤ X ≤ 2 mol%) was synthesized using the classical melting method. The obtained FT-IR spectroscopy of the fabricated samples refers to the transformation of the structural unit BO3 into BO4. Ultrasonic velocities and elastic moduli were found to increase with the increase in the ratio of Na2B4O7 in the fabricated samples. MCNP-5 code was applied to determine the gamma-ray shielding characteristics. The results demonstrate that the glasses without MnO2 content have the best gamma-ray shielding capacity. The linear attenuation coefficient (LAC) varied in the range between 0.055 and 8.873 cm−1 for gamma photons between 0.015 and 15 meV. Moreover, the fast neutron removal cross section was calculated theoretically. The mass stopping power and the projected range were calculated using the Stopping and Range of Ions in Matter program (SRIM) for charged protons and alpha particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban et al., Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30–x) BaO-x ZnO glass system. Appl. Phys. A 125, 275 (2019). https://doi.org/10.1007/s00339-019-2574-0

    Article  ADS  Google Scholar 

  2. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J. Mater. Sci. Mater. Electron. 31, 6963–6976 (2020). https://doi.org/10.1007/s10854-020-03261-6

    Article  Google Scholar 

  3. A.A. El-Rehim, H. Zahran, I. Yahia et al., Radiation, Crystallization, and Physical Properties of Cadmium Borate Glasses. Silicon (2020). https://doi.org/10.1007/s12633-020-00798-3

    Article  Google Scholar 

  4. E.A. Abdel Wahab, Kh.S. Shaaban, Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater Res Express 5, 025207 (2018). https://doi.org/10.1088/2053-1591/aaaee8

    Article  ADS  Google Scholar 

  5. A.F.A. El-Rehim, H.Y. Zahran, I.S. Yahia et al., Physical, radiation shielding and crystallization properties of Na2O–Bi2O3–MoO3–B2O3–SiO2–Fe2O3 Glasses. Silicon (2020). https://doi.org/10.1007/s12633-020-00827-1

    Article  Google Scholar 

  6. V. Ulrike, R. Christian, Elastic properties of quaternary glasses in the MgO–CaO–Al2O3–SiO2 system: modelling versus measurement. J. Mater. Sci. 52, 8159–8175 (2017). https://doi.org/10.1007/s10853-017-1023-8

    Article  Google Scholar 

  7. P. Bragiel, P. Ficek, W. Prochwicz, I. Radkowska, N. Veeraiah, Are the phosphorus-rich Na2O–CaO–B2O3–SiO2–P2O5 glasses bioactive and what is an influence of doping with manganese oxide. Mater. Sci. Poland 35, 760–766 (2018). https://doi.org/10.1515/msp-2017-0093

    Article  ADS  Google Scholar 

  8. M. Szumera, I. Wacławska, J. Sułowska, Thermal properties of MnO2 and SiO2 containing phosphate glasses. J. Therm. Anal. Calorim. 123, 1083–1089 (2015). https://doi.org/10.1007/s10973-015-5010-5

    Article  Google Scholar 

  9. J. Hanuza, M. Ptak, M. Mączka, K. Hermanowicz, J. Lorenc, A.A. Kaminskii, Polarized IR and Raman spectra of Ca2MgSi2O7, Ca2ZnSi2O7 and Sr2MgSi2O7 single crystals: temperature-dependent studies of commensurate to incommensurate and incommensurate to normal phase transitions. J. Solid-State Chem. 191(2012), 90–101 (2012). https://doi.org/10.1016/j.jssc.2012.02.051

    Article  ADS  Google Scholar 

  10. V.C. Veeranna Gowda, R.V. Anavekar, Transport properties of Li2O–MnO2–B2O3 glasses. Solid State Ionics 176, 1393–1401 (2005). https://doi.org/10.1016/j.ssi.2005.04.002

    Article  Google Scholar 

  11. S. Gómez-Salces, J.A. Barreda-Argüeso, R. Valiente, F. Rodríguez, Solarization-induced redox reactions in doubly Ce3+/Mn2+ highly doped transmission glasses studied by optical absorption and photoluminescence. Sol. Energy Mater. Sol. Cells 157, 42–47 (2016). https://doi.org/10.1016/j.solmat.2016.05.010

    Article  Google Scholar 

  12. P. Rumori, B. Deroide, N. Abidi, H. El Mkami, J.V. Zanchetta, Mn2+ electron paramagnetic resonance study of a sodium borosilicate glass prepared by the sol-gel method. J. Phys. Chem. Solids 59, 959–967 (1998). https://doi.org/10.1016/S0022-3697(98)00003-1

    Article  ADS  Google Scholar 

  13. S.P. Singh, A. Aman Tarafder, Comparative investigation on the effect of alkaline earth oxides on the intensity of absorption bands due to Cu2+, Mn3+ and Cr3+ ions in ternary silicate glasses. Bull. Mater. Sci. 27, 281–287 (2004). https://doi.org/10.1007/BF02708518

    Article  Google Scholar 

  14. W. Thiemsorn, K. Keowkamnerd, S. Phanichphant et al., Influence of glass basicity on redox interactions of iron-manganese-copper ion pairs in soda-lime-silica glass. Glass Phys. Chem. 34, 19–29 (2008). https://doi.org/10.1134/S1087659608010033

    Article  Google Scholar 

  15. S. Kumar, S. Purabi, Optical absorption spectra of solarized Mn3+ and V2+ ions in glass. Phys. Chem. Glasses 1(6), 175–180 (1960)

    Google Scholar 

  16. J.C. Haddon, E.A. Rogers, D.J. Williams, Absorption spectra of first row transition metal ions in phosphate glasses. J. Am. Ceram. Soc. 52, 52–52 (1969). https://doi.org/10.1111/j.1151-2916.1969.tb12661.x

    Article  Google Scholar 

  17. L.S. Waters, G.W. McKinney, J.W. Durkee, M.L. Fensin, J.S. Hendricks, M.R. James, R.C. Johns, D.B. Pelowitz, The MCNPX Monte Carlo radiation transport code. AIP Conf. Proc. 896, 81 (2007). https://doi.org/10.1063/1.2720459

    Article  ADS  Google Scholar 

  18. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)

    Article  ADS  Google Scholar 

  19. E.A. Abdel Wahab, M.S.I. Koubisy, M.I. Sayyed, K.A. Mahmoud, A.F. Zatsepin, S.A. Makhlouf, K.S. Shaaban, Novel borosilicate glass system: Na2B4O7–SiO2–MnO2: synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features. J. Non-Cryst. Solids (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120509

    Article  Google Scholar 

  20. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s moidulus of glass. J. Non-Cryst. Solids 12, 35–45 (1973). https://doi.org/10.1016/0022-3093(73)90053-7

    Article  ADS  Google Scholar 

  21. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J. Non-Cryst. Solids 17, 147–157 (1975). https://doi.org/10.1016/0022-3093(75)90047-2

    Article  ADS  Google Scholar 

  22. K.S. Shaaban, M.S.I. Koubisy, H.Y. Zahran et al., Spectroscopic properties, electronic polarizability, and optical basicity of titanium-cadmium tellurite glasses doped with different amounts of lanthanum. J Inorg Organomet Polym (2020). https://doi.org/10.1007/s10904-020-01640-4

    Article  Google Scholar 

  23. K.A. Mahmoud, O.L. Tashlykov, E. Lacomme, M.I. Sayyed, Ö.F. Özpolat, Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon 6, e03560 (2020). https://doi.org/10.1016/j.heliyon.2020.e03560

    Article  Google Scholar 

  24. M.I. Sayyed, K.A. Mahmoud, S. Islam, O.L. Tashlykov, E. Lacomme, K.M. Kaky, Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregates. Radiat Phys Chem 174, 108925 (2020). https://doi.org/10.1016/j.radphyschem.2020.108925

    Article  Google Scholar 

  25. J.F. Ziegler, SRIM—the stopping and range of ions in matter. http://www.srim.org (2008)

  26. K.S. Shaaban, S.M. Abo-Naf, M.E.M. Hassouna, Physical and structural properties of lithium borate glasses containing MoO3. Silicon 11, 2421–2428 (2019). https://doi.org/10.1007/s12633-016-9519-4

    Article  Google Scholar 

  27. K.S. Shaaban, S.M. Abo-naf, A.M. Abd-Elnaeim, M.E.M. Hassouna, Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl Phys A 123, 457–466 (2017). https://doi.org/10.1007/s00339-017-1052-9

    Article  ADS  Google Scholar 

  28. K. Shaaban, E.A. Abdel Wahab, A.A. El-Maaref et al., Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J. Mater. Sci. Mater. Electron. 31, 4986–4996 (2020). https://doi.org/10.1007/s10854-020-03065-8

    Article  Google Scholar 

  29. A.A. El-Maaref, E.A.A. Wahab, K.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, E.S. Yousef, Visible and mid-infrared spectral emissions and radiative rates calculations of Tm3+ doped BBLC glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 242, 118774 (2020). https://doi.org/10.1016/j.saa.2020.118774

    Article  Google Scholar 

  30. A.F.A. El-Rehim, A.M. Ali, H.Y. Zahran et al., Spectroscopic, structural, thermal, and mechanical properties of B2O3-CeO2-PbO2 glasses. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01799-w

    Article  Google Scholar 

  31. H.H. Somaily, K.S. Shaaban, S.A. Makhlouf et al., Comparative studies on polarizability, optical basicity and optical properties of lead borosilicate modified with titania. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01650-2

    Article  Google Scholar 

  32. E.A. Abdel Wahab, K.S. Shaaban, E.S. Yousef, Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt. Quant. Electron. 52, 458 (2020). https://doi.org/10.1007/s11082-020-02575-3

    Article  Google Scholar 

  33. H. Darwish, M.M. Gomaa, Effect of compositional changes on the structure and properties of alkali-alumino borosilicate glasses. J. Mater. Sci. Mater. Electron. 17, 35–42 (2006). https://doi.org/10.1007/s10854-005-5139-2

    Article  Google Scholar 

  34. K.H.S. Shaaban, Y.B. Saddeek, K. Aly, Physical properties of pseudo quaternary Na2B4O7–SiO2–MoO3–Dy2O3 glasses. Ceram Int 44, 3862–3867 (2018). https://doi.org/10.1016/j.ceramint.2017.11.175

    Article  Google Scholar 

  35. K.S. Shaaban, A.A. El-Maaref, M. Abdelawwad, Y.B. Saddeek, H. Wilke, H. Hillmer, Spectroscopic properties and Judd–Ofelt analysis of Dy3+ ions in molybdenum borosilicate glasses. J. Lumin. 196, 477–484 (2018). https://doi.org/10.1016/j.jlumin.2017.12.041

    Article  Google Scholar 

  36. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses 2 Raman and mid-infrared investigation of the network structure. J. Phys. Chem. 91, 1073–1079 (1987). https://doi.org/10.1021/j100289a014

    Article  Google Scholar 

  37. A.A. El-Maaref, K.H.S. Shaaban, M. Abdelawwa, Y.B. Saddeek, Optical characterizations and Judd–Ofelt analysis of Dy3+ doped borosilicate glasses. Opt. Mater. 72(2017), 169–176 (2017). https://doi.org/10.1016/j.optmat.2017.05.062

    Article  ADS  Google Scholar 

  38. K.S. Shaaban, Y. El Sayed, Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik 203, 163976 (2020). https://doi.org/10.1016/j.ijleo.2019.163976

    Article  ADS  Google Scholar 

  39. K.S. Shaaban, E.S. Yousef, S.A. Mahmoud et al., Mechanical, structural and crystallization properties in titanite doped phosphate glasses. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01574-x

    Article  Google Scholar 

  40. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic polarizability, optical basicity and mechanical properties of aluminum lead phosphate glasses. Opt. Quant. Electron. 52, 125 (2020). https://doi.org/10.1007/s11082-020-2191-3

    Article  Google Scholar 

  41. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B2O3–30Li2O–5Al2O3) glasses doped with titanate. J. Electron. Mater. 49, 2040–2049 (2020). https://doi.org/10.1007/s11664-019-07889-x

    Article  ADS  Google Scholar 

  42. A. Gaddam, H.R. Fernandes, D.U. Tulyaganov, J.M.F. Ferreira, The structural role of lanthanum oxide in silicate glasses. J. Non-Cryst. Solids 505, 18–27 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.10.023

    Article  ADS  Google Scholar 

  43. A. Gaddam, H.R. Fernandes, B. Doumer, L. Montagne, J.M.F. Ferreira, Structure and thermal relaxation of network units and crystallization of lithium silicate-based glasses doped with oxides of Al and B. Phys. Chem. Chem. Phys. 19, 26034–26046 (2017). https://doi.org/10.1039/C7CP01690E

    Article  Google Scholar 

  44. A. Dahshan, Y.B. Saddeek, K.A. Aly, K.H.S. Shaaban, M.F. Hussein, A.O.A. El Naga, S.O. Mahmoud, Preparation and characterization of Li2B4O7–TiO2–SiO2 glasses doped with metal-organic framework derived nano-porous Cr2O3. J. Non-Cryst. Solids 508, 51–61 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.01.002

    Article  ADS  Google Scholar 

  45. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman et al., Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl. Phys. A 125, 869 (2019). https://doi.org/10.1007/s00339-019-3166-8

    Article  ADS  Google Scholar 

  46. M.I. Sayyed, M.H.M. Zaid, N. Effendy, K.A. Matori, H.A.A. Sidek, E. Lacomme, K.A. Mahmoud, MM Al Shammari, The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses. J. Mater. Res. Technol. 9, 8429–8438 (2020). https://doi.org/10.1016/j.jmrt.2020.05.113

    Article  Google Scholar 

  47. R.A.R. Bantan, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Application of experimental measurements, Monte Carlo simulation and theoretical calculation to estimate the gamma ray shielding capacity of various natural rocks. Prog. Nucl. Energy 126, 103405 (2020). https://doi.org/10.1016/j.pnucene.2020.103405

    Article  Google Scholar 

  48. K.M. Kaky, M.I. Sayyed, M.H.A. Mhareb, A. Abdalsalam, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Physical, structural, optical and gamma radiation attenuation properties of germanate-tellurite glasses for shielding applications. J. Nanocryst. Solids 545, 120250 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120250

    Article  Google Scholar 

  49. Y.S. Rammah, F.I. El-Agwany, K.A. Mahmoud, A. Novatski, R. El-Mallawany, Role of ZnO on TeO2·Li2O·ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program. J. Non-Cryst. Solids 544, 120162 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120162

    Article  Google Scholar 

  50. M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, K.M. Kaky, S.O. Baki, M.A. Mahdi, Novel tellurite glass (60–x)TeO2–10GeO2–20ZnO–10BaO–xBi2O3 for radiation shielding. J. Alloys Compd. 844, 155668 (2020). https://doi.org/10.1016/j.jallcom.2020.155668

    Article  Google Scholar 

  51. N.Y. Yorgun, E. Kavaz, H.O. Tekin, M.I. Sayyed, Ö.F. Özdemir, Borax effect on gamma and neutron shielding features of lithium borate glasses: an experimental and Monte Carlo studies. Mater. Res. Express 6, 115217 (2019). https://doi.org/10.1088/2053-1591/ab4fcc

    Article  ADS  Google Scholar 

  52. G. Kilic, E. Ilik, K.A. Mahmoud, R. El-Mallawany, F.I. El-Agawany, Y.S. Rammah, Novel zinc vanadyl boro-phosphate glasses: ZnO–V2O5–P2O5–B2O3: physical, thermal, and nuclear radiation shielding properties. Ceram Int 46(part B), 19318–19327 (2020). https://doi.org/10.1016/j.ceramint.2020.04.272

    Article  Google Scholar 

  53. A.S. Abouhaswa, M.I. Sayyed, A.S. Altowyan, Y. Al-Hadeethi, K.A. Mahmoud, Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program. J Non-Cryst Solids 543, 120134 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kh. S. Shaaban or K. A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koubisy, M.S.I., Shaaban, K.S., Wahab, E.A.A. et al. Synthesis, structure, mechanical and radiation shielding features of 50SiO2–(48 + X) Na2B4O7–(2 − X) MnO2 glasses. Eur. Phys. J. Plus 136, 156 (2021). https://doi.org/10.1140/epjp/s13360-021-01125-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01125-4

Navigation