Skip to main content

Advertisement

Log in

Current status and future developments of the ion beam facility at the centre of micro-analysis of materials in Madrid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report on the current status of the ion beam laboratory of the Centre of Micro-Analysis of Materials at the Autonomous University of Madrid. The 5 MV accelerator facility provides MeV ion beams of any stable element. Six main beam lines are under operation, allowing the analysis and modification of materials through ion beam methods. Although the most demanded ions are H and He for standard Rutherford backscattering spectrometry and particle-induced X-ray emission experiments, many other analytical techniques and specific set-ups are available for users. The facility especially highlights for the use of high-energy heavy ions and microbeams, with important applications in material science, optics and electronics, biology, cultural heritage, and astrophysics. Ongoing upgrades of the facility are oriented to improve the quality of the service for external users and to face new scientific and technological challenges in areas such as advanced materials, space, energy and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Sessler, E. Wilson, Engines of Discovery (World Scientific, New Jersey, 2007)

    Book  Google Scholar 

  2. IAEA. Database of electrostatic accelerators. https://nucleus.iaea.org/sites/accelerators/Pages/ADB.aspx

  3. M. Nastasi, J. Mayer, Ion Implantation and Synthesis of Materials (Springer, Berlin, 2010)

    Google Scholar 

  4. W. Wesch, E. Wendler, Ion Beam Modification of Solids (Springer, Berlin, 2016)

    Book  Google Scholar 

  5. T. Som, D. Kanjilal, Nanofabrication by Ion-Beam Sputtering (Jenny Stanford Publishing, Delhi, 2012)

    Book  Google Scholar 

  6. Y. Wang, M. Nastasi, Handbook Modern Ion Beam Materials Analysis (Materials Research Society, Warrendale, 2009)

    Google Scholar 

  7. C. Jeynes, J.L. Colaux, Analyst 141(21), 5944 (2016). https://doi.org/10.1039/C6AN01167E

    Article  ADS  Google Scholar 

  8. C. Jeynes, M. Bailey, N. Bright, M. Christopher, G. Grime, B. Jones, V. Palitsin, R. Webb, Nucl. Instrum. Methods Phys. Res. B 271, 107 (2012). https://doi.org/10.1016/j.nimb.2011.09.020

    Article  ADS  Google Scholar 

  9. A. Redondo-Cubero, V. Corregidor, L. Vázquez, L.C. Alves, Nucl. Instrum. Methods Phys. Res. B 348(Supplement C), 246 (2015). https://doi.org/10.1016/j.nimb.2014.11.040

  10. C. Jeynes, V. Palitsin, M. Kokkoris, A. Hamilton, G. Grime, Nucl. Instrum. Methods Phys. Res. B 465, 85 (2020). https://doi.org/10.1016/j.nimb.2019.12.019

    Article  ADS  Google Scholar 

  11. A. Zucchiatti, A. Redondo-Cubero, Nucl. Instrum. Methods Phys. Res. B 331, 48 (2014). https://doi.org/10.1016/j.nimb.2014.02.013

    Article  ADS  Google Scholar 

  12. A. Gottdang, D. Mous, R. Haitsma, Nucl. Instrum. Methods Phys. Res. B 190(1), 177 (2002). https://doi.org/10.1016/S0168-583X(02)00458-5

    Article  ADS  Google Scholar 

  13. A. Climent-Font, F. Pászti, G. García, M. Fernández-Jiménez, F. Agulló, Nucl. Instrum. Methods Phys. Res. B 219–220, 400 (2004). https://doi.org/10.1016/j.nimb.2004.01.090

    Article  ADS  Google Scholar 

  14. D. Bachiller-Perea, A. Munoz-Martin, P. Corvisiero, D. Jimenez-Rey, V. Joco, A. Maira, A. Nakbi, A. Rodriguez, J. Narros, A. Zucchiatti, Energy Procedia 41, 57 (2013). https://doi.org/10.1016/j.egypro.2013.09.007

    Article  Google Scholar 

  15. D. Jamieson, Nucl. Instrum. Methods Phys. Res. B 136–138, 1 (1998). https://doi.org/10.1016/S0168-583X(97)00657-5

    Article  ADS  Google Scholar 

  16. M. van den Putte, J. van den Brand, D. Jamieson, B. Rout, R. Szymanski, Nucl. Instrum. Methods Phys. Res. B 210, 21 (2003). https://doi.org/10.1016/S0168-583X(03)01006-1

    Article  ADS  Google Scholar 

  17. M.D. Ynsa, M.A. Ramos, N. Skukan, V. Torres-Costa, M. Jakšić, Nucl. Instrum. Methods Phys. Res. B 348, 174 (2015). https://doi.org/10.1016/j.nimb.2014.11.036

    Article  ADS  Google Scholar 

  18. M. Laitinen, M. Rossi, J. Julin, T. Sajavaara, Nucl. Instrum. Methods Phys. Res. B 337, 55 (2014). https://doi.org/10.1016/j.nimb.2014.07.001

    Article  ADS  Google Scholar 

  19. O. Enguita, M. Fernández-Jiménez, G. García, A. Climent-Font, T. Calderón, G. Grime, Nucl. Instrum. Methods Phys. Res. B 219–220, 384 (2004). https://doi.org/10.1016/j.nimb.2004.01.087

    Article  ADS  Google Scholar 

  20. L.M. Fraile, J. Äystö, Nucl. Instrum. Methods Phys. Res. A 513(1), 287 (2003). https://doi.org/10.1016/j.nima.2003.08.049

    Article  ADS  Google Scholar 

  21. M. Carmona-Gallardo, B.S. Nara Singh, M.J.G. Borge, J.A. Briz, M. Cubero, B.R. Fulton, H. Fynbo, N. Gordillo, M. Hass, G. Haquin, A. Maira, E. Nácher, Y. Nir-El, V. Kumar, J. McGrath, A. Muñoz-Martín, A. Perea, V. Pesudo, G. Ribeiro, J. Sánchez del Rio, O. Tengblad, R. Yaniv, Z. Yungreis, Phys. Rev. C 86(3), 032801 (2012). https://doi.org/10.1103/PhysRevC.86.032801

  22. M. Alcorta, M.J.G. Borge, M. Cubero, C.A. Diget, R. Domínguez-Reyes, L.M. Fraile, B.R. Fulton, H.O.U. Fynbo, D. Galaviz, S. Hyldegaard, H. Jeppesen, B. Jonson, O.S. Kirsebom, M. Madurga, A. Maira, A. Muñoz-Martín, T. Nilsson, G. Nyman, D. Obradors, A. Perea, K. Riisager, O. Tengblad, M. Turrion, Phys. Rev. C 86(6), 064306 (2012). https://doi.org/10.1103/PhysRevC.86.064306

    Article  ADS  Google Scholar 

  23. J.G. Buijnsters, R. Gago, A. Redondo-Cubero, I. Jiménez, J. Appl. Phys. 112(9), 093502 (2012). https://doi.org/10.1063/1.4764001

    Article  ADS  Google Scholar 

  24. R.W. Smith, J. Plaza, D. Ghita, M. Sánchez, B.J. García, A. Muñoz-Martín, A. Climent-Font, Nucl. Instrum. Methods Phys. Res. B 266(8), 1450 (2008). https://doi.org/10.1016/j.nimb.2008.01.024

    Article  ADS  Google Scholar 

  25. W. Assmann, J. Davies, G. Dollinger, J. Forster, H. Huber, T. Reichelt, R. Siegele, Nucl. Instrum. Methods Phys. Res. B 118(1), 242 (1996). https://doi.org/10.1016/0168-583X(95)01183-8

    Article  ADS  Google Scholar 

  26. R. Escobar Galindo, N. Benito, D. Duday, G.G. Fuentes, N. Valle, P. Herrero, L. Vergara, V. Joco, O. Sanchez, A. Arranz, C. Palacio, J. Anal. At. Spectrom. 27(3), 390 (2012). https://doi.org/10.1039/C2JA10296J

  27. E. Salas, R.J. Jiménez Riobóo, J. Sánchez-Marcos, F. Jiménez-Villacorta, A. Muñoz-Martín, J.E. Prieto, V. Joco, C. Prieto, J. Appl. Phys. 114(21), 213508 (2013). https://doi.org/10.1063/1.4837655

  28. M. Gómez-Castaño, A. Redondo-Cubero, L. Vázquez, J.L. Pau, A.C.S. Appl, Mater. Interfaces 8(42), 29163 (2016). https://doi.org/10.1021/acsami.6b09805

    Article  Google Scholar 

  29. M. Gómez-Castaño, J.L. Pau, A. Redondo-Cubero, CrystEngComm 20(26), 3666 (2018). https://doi.org/10.1039/C8CE00390D

    Article  Google Scholar 

  30. J.E. Prieto, A. Zucchiatti, P. Galán, P. Prieto, Nucl. Instrum. Methods Phys. Res. B 406, 167 (2017). https://doi.org/10.1016/j.nimb.2017.01.047

    Article  ADS  Google Scholar 

  31. D. Jimenez-Rey, O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Muñoz-Martin, A. Rivera, F. Agulló-López, Nucl. Instrum. Methods Phys. Res. B 286, 282 (2012). https://doi.org/10.1016/j.nimb.2011.12.025

    Article  ADS  Google Scholar 

  32. M.A. Ramos, J. Barzola-Quiquia, P. Esquinazi, A. Muñoz-Martin, A. Climent-Font, M. García-Hernández, Phys. Rev. B 81(21), 214404 (2010). https://doi.org/10.1103/PhysRevB.81.214404

    Article  ADS  Google Scholar 

  33. D. Martín y Marero, N. Gordillo, R. González-Arrabal, Phys. Rev. B 79(15), 155449 (2009). https://doi.org/10.1103/PhysRevB.79.155449

  34. J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, J. Soares, Appl. Phys. A 81(7), 1465 (2005). https://doi.org/10.1007/s00339-005-3237-x

    Article  ADS  Google Scholar 

  35. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, M. Carrascosa, J. Appl. Phys. 101(3), 033512 (2007). https://doi.org/10.1063/1.2434801

    Article  ADS  Google Scholar 

  36. A. García-Navarro, F. Agulló-López, J. Olivares, J. Lamela, F. Jaque, J. Appl. Phys. 103(9), 093540 (2008). https://doi.org/10.1063/1.2912494

    Article  ADS  Google Scholar 

  37. A. Rivera, J. Olivares, G. García, J.M. Cabrera, F. Agulló-Rueda, F. Agulló-López, Phys. Stat. Sol. (a) 206(6), 1109 (2009). https://doi.org/10.1002/pssa.200824409

    Article  ADS  Google Scholar 

  38. J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, F. Agulló-López, Appl. Phys. Lett. 101(15), 154103 (2012). https://doi.org/10.1063/1.4757886

    Article  ADS  Google Scholar 

  39. O. Peña-Rodríguez, M. Crespillo, P. Díaz-Nuñez, J. Perlado, A. Rivera, J. Olivares, Opt. Mater. Express 6(3), 734 (2016). https://doi.org/10.1364/OME.6.000734

    Article  ADS  Google Scholar 

  40. O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, F. Agulló-López, Appl. Phys. Express 5(1), 011101 (2011). https://doi.org/10.1143/apex.5.011101

    Article  ADS  Google Scholar 

  41. F.J. Sánchez, I. García-Cortés, J.F. Marco, D. Jiménez-Rey, A. Maira, J. Castellanos, R. Vila, Á. Ibarra, Nuclear Materials and Energy 9, 476 (2016). https://doi.org/10.1016/j.nme.2016.05.010

    Article  Google Scholar 

  42. I. García-Cortés, T. Leguey, F. Sánchez, A. Maira, A. Moroño, P. Muñoz, M. Scepanovic, J.F. Marco, J. Nucl. Mater. 517, 138 (2019). https://doi.org/10.1016/j.jnucmat.2019.02.009

    Article  ADS  Google Scholar 

  43. O. Peña-Rodríguez, A. Prada, J. Olivares, A. Oliver, L. Rodríguez-Fernández, H.G. Silva-Pereyra, E. Bringa, J.M. Perlado, A. Rivera, Sci. Rep. 7(1), 922 (2017). https://doi.org/10.1038/s41598-017-01145-0

    Article  ADS  Google Scholar 

  44. A. Egaña, V. Tormo-Márquez, A. Torrente, J. Muñoz-Santiuste, J. Olivares, M. Tardío, Nucl. Instrum. Methods Phys. Res. B 435, 152 (2018). https://doi.org/10.1016/j.nimb.2017.11.010

    Article  ADS  Google Scholar 

  45. G. García, M. Díaz-Híjar, V. Tormo-Márquez, I. Preda, O. Peña-Rodríguez, J. Olivares, Diam. Relat. Mater. 58, 226 (2015). https://doi.org/10.1016/j.diamond.2015.08.014

    Article  ADS  Google Scholar 

  46. G. García, I. Preda, M. Díaz-Híjar, V. Tormo-Márquez, O. Peña-Rodríguez, J. Olivares, F. Bosia, N. Pugno, F. Picollo, L. Giuntini, A. Sordini, P. Olivero, L. López-Mir, C. Ocal, Diam. Relat. Mater. 69, 1 (2016). https://doi.org/10.1016/j.diamond.2016.06.015

    Article  ADS  Google Scholar 

  47. E. Punzón-Quijorna, V. Torres-Costa, M. Manso-Silván, R. Martín-Palma, A. Climent-Font, Nucl. Instrum. Methods Phys. Res. B 282, 25 (2012). https://doi.org/10.1016/j.nimb.2011.08.040

    Article  ADS  Google Scholar 

  48. E. Punzón-Quijorna, S. Kajari-Shröder, F. Agulló-Rueda, M. Manso Silván, R.J. Martín-Palma, P. Herrero Fernández, V. Torres-Costa, A. Climent-Font, Vacuum 138, 238 (2017). https://doi.org/10.1016/j.vacuum.2016.10.011

  49. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, O. Caballero, Opt. Lett. 32(17), 2587 (2007). https://doi.org/10.1364/OL.32.002587

    Article  ADS  Google Scholar 

  50. O. Caballero-Calero, A. García-Cabañes, M. Carrascosa, V. Bermúdez, M. Crespillo, J. Olivares, Ferroelectrics 390(1), 29 (2009). https://doi.org/10.1080/00150190902993424

    Article  Google Scholar 

  51. M. Jubera, A. García-Cabañes, J. Olivares, A. Alcazar, M. Carrascosa, Opt. Lett. 39(3), 649 (2014). https://doi.org/10.1364/OL.39.000649

    Article  ADS  Google Scholar 

  52. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, J.S. Aitchison, Nucl. Instrum. Methods Phys. Res. B 249(1), 177 (2006). https://doi.org/10.1016/j.nimb.2006.03.108

    Article  ADS  Google Scholar 

  53. C.A. Merchant, P. Scrutton, S. Garcia-Blanco, C. Hnatovsky, R.S. Taylor, A. Garcia-Navarro, G. Garcia, F. Agullo-Lopez, J. Olivares, A.S. Helmy, J.S. Aitchison, IEEE J. Quantum Electon. 45(4), 373 (2009). https://doi.org/10.1109/JQE.2009.2013216

    Article  ADS  Google Scholar 

  54. R. Frentrop, I. Subbotin, F. Segerink, R. Keim, V. Tormo-Marquez, J. Olivares, K. Shcherbachev, S. Yakunin, I. Makhotkin, S.M. Garcia-Blanco, Opt. Mater. Express 9(12), 4796 (2019). https://doi.org/10.1364/OME.9.004796

    Article  ADS  Google Scholar 

  55. S.M. Martinussen, R.N. Frentrop, M. Dijkstra, F. Segerink, V. Tormo-Márquez, J. Olivares, S.M. Garcia-Blanco, Opt. Mater. Express 9(8), 3371 (2019). https://doi.org/10.1364/OME.9.003371

    Article  ADS  Google Scholar 

  56. V. Tormo-Marquez, M. Díaz-Hijar, M. Carrascosa, V.Y. Shur, J. Olivares, Opt. Express 27(6), 8696 (2019). https://doi.org/10.1364/OE.27.008696

    Article  ADS  Google Scholar 

  57. J. Manzano, J. Olivares, F. Agulló-López, M. Crespillo, A. Moroño, E. Hodgson, Nucl. Instrum. Methods Phys. Res. B 268(19), 3147 (2010). https://doi.org/10.1016/j.nimb.2010.05.075

    Article  ADS  Google Scholar 

  58. J. Olivares, A. García-Navarro, G. García, A. Mýndez, F. Agulló-López, Appl. Phys. Lett. 89(7), 071923 (2006). https://doi.org/10.1063/1.2236221

    Article  ADS  Google Scholar 

  59. M.L. Crespillo, O. Caballero-Calero, V. Joco, A. Rivera, P. Herrero, J. Olivares, F. Agulló-López, Appl. Phys. A 104(4), 1143 (2011). https://doi.org/10.1007/s00339-011-6391-3

    Article  ADS  Google Scholar 

  60. Á.R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. Crespillo, J. Perlado, A. Rivera, Nucl. Instrum. Methods Phys. Res. B 352, 145 (2015). https://doi.org/10.1016/j.nimb.2014.12.073

    Article  ADS  Google Scholar 

  61. T. Pinheiro, M. Ynsa, L. Alves, P. Teixeira, J. Ferreira, P. Filipe, Nucl. Instrum. Methods Phys. Res. B 348, 119 (2015). https://doi.org/10.1016/j.nimb.2014.11.042

    Article  ADS  Google Scholar 

  62. A. Redondo-Cubero, M. Ynsa, M. Romero, L. Alves, E. Muñoz, Nucl. Instrum. Methods Phys. Res. B 306, 212 (2013). https://doi.org/10.1016/j.nimb.2012.12.030

    Article  ADS  Google Scholar 

  63. H. Liang, Z. Dang, J. Wu, J. van Kan, S. Qureshi, M. Ynsa, V. Torres-Costa, A. Maira, T. Venkatesan, M. Breese, Nucl. Instrum. Methods Phys. Res. B 394, 1 (2017). https://doi.org/10.1016/j.nimb.2016.12.025

    Article  ADS  Google Scholar 

  64. M.D. Ynsa, F. Agulló-Rueda, N. Gordillo, A. Maira, D. Moreno-Cerrada, M.A. Ramos, Nucl. Instrum. Methods Phys. Res. B 404, 207 (2017). https://doi.org/10.1016/j.nimb.2017.01.052

    Article  ADS  Google Scholar 

  65. F. Agulló-Rueda, N. Gordillo, M.D. Ynsa, A. Maira, J. Cañas, M.A. Ramos, Carbon 123, 334 (2017). https://doi.org/10.1016/j.carbon.2017.07.076

    Article  Google Scholar 

  66. F. Agulló-Rueda, M.D. Ynsa, N. Gordillo, A. Maira, D. Moreno-Cerrada, M.A. Ramos, Diam. Relat. Mater. 72, 94 (2017). https://doi.org/10.1016/j.diamond.2017.01.010

    Article  ADS  Google Scholar 

  67. P. Aprà, J. Ripoll-Sau, J. Manzano-Santamaría, C. Munuera, J. Forneris, S. Ditalia Tchernij, P. Olivero, F. Picollo, E. Vittone, M. Ynsa, Diam. Relat. Mater. 104, 107770 (2020). https://doi.org/10.1016/j.diamond.2020.107770

  68. J.R. Bird, P. Duerden, D.J. Wilson, Ion Beam Techniques in Archaeology and the Arts (Harwood Academic Publishers, Chur, 1983)

    Google Scholar 

  69. A. Zucchiatti, A. Climent Font, P.C. Gutierrez Neira, A. Perea, P. Fernandez Esquivel, S. Rovira Llorens, J.L. Ruvalcaba Sil, A. Verde, Nucl. Instrum. Methods Phys. Res. B 332, 160 (2014). https://doi.org/10.1016/j.nimb.2014.02.052

  70. A. Perea, P. Gutiérrez-Neira, A. Climent-Font, P. Fernández-Esquivel, S. Rovira-Llorens, J. Ruvalcaba-Sil, A. Verde, A. Zucchiatti, J. Archaeol. Sci. 40(5), 2326 (2013). https://doi.org/10.1016/j.jas.2012.12.033

    Article  Google Scholar 

  71. A. Perea, A. Climent-Font, M. Fernández-Jiménez, O. Enguita, P. Gutiérrez, S. Calusi, A. Migliori, I. Montero, Nucl. Instrum. Methods Phys. Res. B 249(1), 638 (2006). https://doi.org/10.1016/j.nimb.2006.03.071

    Article  ADS  Google Scholar 

  72. A. Zucchiatti, A.C. Font, M.C. Galassi, Stud. Conserv. 57(3), 131 (2012). https://doi.org/10.1179/2047058412Y.0000000003

    Article  Google Scholar 

  73. A. Zucchiatti, A. Climent-Font, P. Gutiérrez-Neira, I. Montero-Ruiz, J. Fuenlabrada, C. Galindo, J. Archaeol. Sci. Rep. 19, 439 (2018). https://doi.org/10.1016/j.jasrep.2018.03.015

    Article  Google Scholar 

  74. P.C. Gutiérrez, M.D. Ynsa, A. Climent-Font, T. Calligaro, Nucl. Instrum. Methods Phys. Res. B 268(11), 2038 (2010). https://doi.org/10.1016/j.nimb.2010.02.053

    Article  ADS  Google Scholar 

  75. P.C. Gutiérrez Neira, A. Zucchiatti, I. Montero-Ruiz, R. Vilaça, C. Bottaini, M. Gener, A. Climent-Font, Nucl. Instrum. Methods Phys. Res. B 269(24), 3082 (2011). https://doi.org/10.1016/j.nimb.2011.04.072

  76. A. Zucchiatti, P.C. Gutiérrez Neira, A. Climent-Font, C. Escudero, M. Barrera, Nucl. Instrum. Methods Phys. Res. B 269(24), 3115 (2011). https://doi.org/10.1016/j.nimb.2011.04.084

  77. M.D. Ynsa, J. Chamón, P. Gutiérrez, I. Gomez-Morilla, O. Enguita, A.I. Pardo, M. Arroyo, J. Barrio, M. Ferretti, A. Climent-Font, Appl. Phys. A 92(1), 235 (2008). https://doi.org/10.1007/s00339-008-4497-z

    Article  ADS  Google Scholar 

  78. A. Perea, P.C. Gutiérrez-Neira, A. Climent-Font, Mediterr. Archaeol. Archaeom. 18, 1 (2018). https://doi.org/10.5281/ZENODO.1461657

    Article  Google Scholar 

  79. A. Mazal, Y. Prezado, C. Ares, L. de Marzi, A. Patriarca, R. Miralbell, V. Favaudon, BJR 93(1107), 20190807 (2020). https://doi.org/10.1259/bjr.20190807

    Article  Google Scholar 

  80. A.R. Smith, Phys. Med. Biol. 51(13), R491 (2006). https://doi.org/10.1088/0031-9155/51/13/r26

    Article  ADS  Google Scholar 

  81. Grupo de Física Nuclear, Universidad Complutense de Madrid. https://ucm.es/gfn

  82. QuironSalud. Centro de protonterapia. www.quironsalud.es/es/protonterapia

  83. F.J. Díaz, Instituto de Investigación Sanitaria. www.fjd.es

Download references

Acknowledgements

We especially thank the effort of many people contributing to the development of CMAM in the last 18 years, including the technical, scientific, and administrative staff. We also thank to all the external users and scientists whom have contributed to the progress of research activities in the Centre. We acknowledge funding from EU COST action CA17126, national projects ENE2016-80788-05-2-R, CTQ-2017-84309-C2-2-R, FPA2017-87568-P, and PID2019-104390BG-I00, PID2019-105156GB-I00, and local projects S2017/BMD-3888, TransNanoAvansens (P2018/NMT4349), TechnofusionIII (S2018/EMT-4437) from Comunidad Autónoma de Madrid. ARC acknowledges Ramón y Cajal program under contract RYC-2015-18047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Redondo-Cubero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redondo-Cubero, A., Borge, M.J.G., Gordillo, N. et al. Current status and future developments of the ion beam facility at the centre of micro-analysis of materials in Madrid. Eur. Phys. J. Plus 136, 175 (2021). https://doi.org/10.1140/epjp/s13360-021-01085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01085-9

Navigation