Skip to main content

Advertisement

Log in

Structural, optical, and gamma-ray shielding properties of a newly fabricated P2O5–B2O3–Bi2O3–Li2O–ZrO2 glass system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A new glass network consists of (40–x)P2O5 + 30B2O3 + 20Bi2O3 + 10Li2O + xZrO2 where x is ranged between 0 and 5 mol% and was fabricated using a quenching method at temperature ranged between 1050° and 1380 °C. It has been observed that there is an increase in the ZrO2 substitution ratio with the glass melting temperature increased gradually. Moreover, by using the XRD spectrometer, it was verified the amorphous state of the glass samples. The absorbance and refractive index were measured experimentally using the UV–Vis–NIR spectrophotometer. Other essential optical parameters such as energy gap, Urbach energy, extinction coefficient, electrical polarizability, molar fraction, and dielectric constants were calculated based on the refractive index's experimental results. Moreover, the fabricated glass samples' ability to stand against the gamma energy and fast neutron were examined using simulation code MCNP-5 and the theoretical calculation by the latest Electron Photon Interaction Cross Section 2017 photoatomic library. The linear attenuation coefficient (LAC) exhibits a good performance when replacing the P2O5 by ZrO2 contents. The LAC at gamma-ray energy (0.015 MeV) was enhanced from 207.112 to 274.831 cm−1, increasing the ZrO2 replacing ratio between 0 and 5 mol %, respectively. The mass attenuation coefficients (µm) were found to have higher values for the library interpolation as compared to MCNP-5 simulations. The prepared glasses' ability to absorb the incoming fast neutron was diminished from 0.0251 to 0.0245 cm2 g−1, increasing the ZrO2 substitution ratio between 0 and 5 mol %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. I.M. Danmallam, S.K. Ghoshal, R. Ariffin, I. Ariffin, Europium luminescence in silver and gold nanoparticles co-embedded phosphate glasses: Judd-Ofelt calculation. Opt. Mater. 105, 109889 (2020)

    Article  Google Scholar 

  2. S.R. Narisimsetti, M. Rajesh, G. Rajasekhara Reddy, B. Deva Prasad, R.S. Danapandian, Study of influence of Sm3+ ions concentration on fluorescence and FT-IR studies of lead barium lithium borate glasses for red color display device applications. Opt. Mater. 97, 109360 (97)

    Article  Google Scholar 

  3. Y. Al-Hadeethi, M.S. Al-Buriahi, M.I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram. Int. 46, 5306–5314 (2020)

    Article  Google Scholar 

  4. J. Massera, Y. Shpotyuk, F. Sabatier, T. Jouan, C. Boussard-Plédel, R. Claire, B. Bureau, P. Laeticia, N.G. Boetti, D. Milanese, L. Hupa, Processing and characterization of novel borophosphate glasses and fibers for medical applications. J. Non-Cryst. Solids 425 52–60 (2015)

    Article  ADS  Google Scholar 

  5. K.M. Kaky, M.I. Sayyed, A. Khammas, A. Kumar, E. Şakar, A.H. Abdalsalam, B. Cevi Sakar, B. Alim, M.H.A. Mhareb, Theoretical and experimental validation gamma shielding properties of B2O3–ZnO–MgO–Bi2O3 glass system. Mater. Chem. Phys. 242, 122504 (2020)

    Article  Google Scholar 

  6. A.M. Ali, M.I. Sayyed, A. Kumar, M. Rashad, A.M. Alshehri, R. Kaur, Optically transparent newly developed glass materials for gamma ray shielding applications. J. Non-Cryst. Solids 521, 119490 (2019)

    Article  Google Scholar 

  7. E.-S.A. Waly, G.S. Al-Qous, M.A. Bourham, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 150, 120–124 (2018)

    Article  ADS  Google Scholar 

  8. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceram. Int. 46 6136–6140 (2020)

    Article  Google Scholar 

  9. M.I. Sayyed, A. Aşkın, A.M. Ali, A. Kumar, M. Rashad, A.M. Alshehri, M. Singh, Extensive study of newly developed highly dense transparent PbO–WO3–BaO–Na2O–B2O3 glasses for radiation shielding applications. J. Non-Cryst. Solids 521, 119521 (2019)

    Article  Google Scholar 

  10. K.J. Singh, S. Kaur, R.S. Kaundal, Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat. Phys. Chem. 96, 153 157 (2014)

    Article  ADS  Google Scholar 

  11. Y. Al-Hadeethi, M.I. Sayyed, M. Hiba, L. Rimondin, X-ray photons attenuation characteristics for two tellurite-based glass systems at dental diagnostic energies. Ceram. Int. 46, 251–257 (2020)

    Article  Google Scholar 

  12. M.H. Kharita, R. Jabra, S. Yousef, T. Samaan, Shielding properties of lead and barium phosphate glasses. Radiat. Phys. Chem. 81, 1568–1571 (2012)

    Article  ADS  Google Scholar 

  13. M. Wilson, Optimization of the radiation shielding capabilities of bismuth-borate glasses using the genetic algorithm. Mater. Chem. Phys. 224, 238–245 (2019)

    Article  Google Scholar 

  14. M. Bektasoglu, M. Mohammad, Investigation of radiation shielding properties of TeO2–ZnO–Nb2O5–Gd2O3 glasses at medical diagnostic energies. Ceram. Int. 46, 16217–16223 (2020)

    Article  Google Scholar 

  15. G. Susoy, Effect of TeO2 additions on nuclear radiation shielding behavior of Li2O–B2O3–P2O5–TeO2 glass-system. Ceram. Int. 46, 3844–3854 (2020)

    Article  Google Scholar 

  16. Y. Al-Hadeethi, M.I. Sayyed, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram. Int. 45, 24858–24864 (2019). https://doi.org/10.1016/j.ceramint.2019.08.234

    Article  Google Scholar 

  17. L. Shamshad, G. Rooh, P. Limkitjaroenpor, N. Srisittipokakun, W. Chaiphaksa, H.J. Kim, J. Kaewkhao, A comparative study of gadolinium based oxide and oxyfluoride-glasses as low energy radiation shielding materials. Prog. Nucl. Energy 97, 53–59 (2017)

    Article  Google Scholar 

  18. Y.S. Rammah, K.A. Mahmoud, M.I. Sayyed, F.I. El-Agwany, R. El-mallawany, Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnOeNa2O–V2O5: synthesis, optical, physical and gamma photon attenuation properties. J. Non-Cryst. Solids (2020). https://doi.org/10.1016/j.jnoncrysol.2020.119944

  19. K. Gokhan, I. Erkan, K.A. Mahmoud, R. El-Mallawany, Y.S. Rammah, Novel zinc vanadyl boro-phosphate glasses: ZnO–V2O5–P2O5–B2O3: physical, thermal, and nuclear radiation shielding properties. Ceram. Int. 46, 19318–19327 (2020)

    Article  Google Scholar 

  20. K. Kaur, K.J. Singh, V. Anand, Correlation of gamma ray shielding and structural properties of PbO–BaO–P2O5 glass system. Nucl. Eng. Des. 285, 31–83 (2015)

    Article  Google Scholar 

  21. K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Comparative study of silicate glasses containing Bi2O3, PbO and BaO: radiation shielding and optical properties. Ann. Nucl. Energy 38, 1438–1441 (2011)

    Article  Google Scholar 

  22. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)

    Article  ADS  Google Scholar 

  23. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

    Article  ADS  Google Scholar 

  24. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    Article  ADS  Google Scholar 

  25. L. Gerward, N. Guilbert, K.B. Jensen, H. Leving, WinXCom—a program for calculating x-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)

    Article  ADS  Google Scholar 

  26. J. Kaewkhao, A. Pokaipisit, P. Limsuwan, Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: comparison with PbO. J. Nucl. Mater. 399, 38–40 (2010)

    Article  ADS  Google Scholar 

  27. M.S. Al-Buriah, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125, 678 (2019). https://doi.org/10.1007/s00339-019-2976-z

    Article  ADS  Google Scholar 

  28. S. Islam, K.A. Mahmoud, M.I. Sayyed, B. Alim, M. Rahman, A.S. Mollah, Study on the radiation attenuation properties of locally available bees-wax as a tissue equivalent bolus material in radiotherapy. Radiat. Phys. Chem. (2019) https://doi.org/10.1016/j.radphyschem.2019.108559

    Article  Google Scholar 

  29. D.E. Cullen, A Survey of Photon Cross Section Data for use in EPICS2017, IAEA-NDS-225, rev.1 (2018)

  30. D.E. Cullen, EPICS2017: April 2019 Status Report (2019)

  31. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M.A. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, J.P. Lestone, C. Lubitz, J.I. Márquez Damián, C.M. Mattoon, E.A. McCutchan, S. Mughabghab, P. Navratil, D. Neudecker, G.P.A. Nobre, G. Noguere, M. Paris, M.T. Pigni, A.J. Plompen, B. Pritychenko, V.G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E.S. Soukhovitskii, I. Stetcu, P. Talou, I. Thompson, S. van der Marck, L. Welser-Sherrill, D. Wiarda, M. White, J.L. Wormald, R.Q. Wright, M. Zerkle, G. Žerovnik, Y. Zhu, ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018). https://doi.org/10.1016/j.nds.2018.02.001

  32. M.C. Han, M.G. Pia, P. Saracco, T. Basaglia, First assessment of ENDF/B-VIII and EPICS atomic data libraries. IEEE Trans. Nucl. Sci. 65, 2268–2278 (2018). https://doi.org/10.1109/TNS.2018.2849328

    Article  ADS  Google Scholar 

  33. T. Basaglia, M. Bonanomi, F. Cattorini, C. Choi, M.C. Han, G. Hoff, C.H. Kim, S. Hun Kim, M. Marcoli, M.G. Pia, P. Saracco, Assessment of new evaluated atomic data libraries in ENDF/B-VIII.0, in 2018 IEEE Nucl. Sci. Symp. Med. Imaging Conf. NSS/MIC 2018—Proc. (2018) 1–2. https://doi.org/10.1109/NSSMIC.2018.8824405.

  34. Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, A. Novatski, R. El-Mallawany, Role of ZnO on TeO2·Li2O·ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program. J. Non-Cryst. Solids 544, 120162 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120162

  35. K.M. Kaky, M.I. Sayyed, M.H.A. Mhareb, A.H. Abdalsalam, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Physical, structural, optical and gamma radiation attenuation properties of germanate-tellurite glasses for shielding applications. J. Non-Cryst. Solids 545, 120250 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120250

    Article  Google Scholar 

  36. A. Abd El, G. Mesbah, N.M.A. Mohammed, A. Ellithi, A simple Method for determining the effective removal cross section for fast neutrons. J. Radiat. Nucl. Appl. 2, 53–85 (2016)

    Article  Google Scholar 

  37. A. Trkov, M. Herman, D.A. Brown, ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files, ENDF/B-VI and ENDF/B-VII, CSEWG Document ENDF-102, Report BNL-90365–2009 Rev. 2, Brookhaven National Laboratory (2009)

  38. F.C. Hila, A.V. Amorsolo, A.M.V. Javier-Hila, N.R.D. Guillermo, A simple spreadsheet program for calculating mass attenuation coefficients and shielding parameters based on EPICS2017 and EPDL97 photoatomic libraries. Radiat. Phys. Chem. 177, 109122 (2020)

    Article  Google Scholar 

  39. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. J. Theor. Exp. Appl. Phys. 22, 0903–0922 (1970). https://doi.org/10.1080/14786437008221061

    Article  Google Scholar 

  40. J. Päiväsaari, M. Putkonen, L. Niinistö, A comparative study on lanthanide oxide thin films grown by atomic layer deposition. Thin Solid Films. 472, 275–281 (2005)

    Article  ADS  Google Scholar 

  41. A.A. Dakhel, Dielectric and optical properties of samarium oxide thin films. J. Alloys Compd. 365, 233–239 (2004)

    Article  Google Scholar 

  42. D. Li, W. Ching, Electronic structures and optical properties of low- and high-pressure phases of crystalline B2O3. Phys. Rev. B Condens. Matter. 54, 13616–13622 (1996). https://doi.org/10.1103/physrevb.54.13616

  43. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic Absorption of Solids [8]. Phys. Rev. (1953) https://doi.org/10.1103/PhysRev.92.1324

    Article  Google Scholar 

  44. A.S. Abouhaswa, Y.S. Rammah, S.E. Ibrahim, R. El-Mallawany, Optical and electrical properties of lead borate glasses. J. Electron. Mater. (2019) https://doi.org/10.1007/s11664-019-07391-4

    Article  Google Scholar 

  45. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. (1996). https://doi.org/10.1063/1.360962

  46. O. Agar, Z.Y. Khattari, M.I. Sayyed, H.O. Tekin, S. Al-Omari, M. Maghrabi, M.H.M. Zaid, I.V. Kityk, Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code. Res. Phys. 12, 101–106 (2019)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-Track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Sayyed or Haifa A. Al-Yousef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, B.M., Abouhaswa, A.S., Sayyed, M.I. et al. Structural, optical, and gamma-ray shielding properties of a newly fabricated P2O5–B2O3–Bi2O3–Li2O–ZrO2 glass system. Eur. Phys. J. Plus 136, 224 (2021). https://doi.org/10.1140/epjp/s13360-020-01064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01064-6

Navigation