Skip to main content

Testing a conjecture on the origin of the standard model

Abstract

A simple Planck-scale model of nature appears to yield the entire standard model of particle physics, including its fundamental constants. The conjecture derives from Dirac’s proposal to describe fermions as tethered objects and models elementary particles as rational tangles. The tangle model appears to explain the Dirac equation, the principle of least action, the observed particle spectrum of fermions and bosons, and the three observed gauge interactions with their Lie groups and all their other properties. In a natural way, the specific tangles for each elementary particle define spin, quantum numbers and all other properties. No aspect of the standard model remains unexplained. Rational tangles appear to imply all the observed propagators and interaction vertices in Feynman diagrams. Other propagators or vertices are excluded. The tangle model thus yields each term of the full Lagrangian of the standard model. Over 100 predictions and tests about physics beyond the standard model are deduced from the conjecture. The predictions cover magnetic monopoles, the weak interaction, the quark model, non-perturbative effects, glueballs, effects of gravity, and more. The predictions agree with all observations performed so far. The conjectured tangles for the elementary particles imply specific Planck-scale processes that occur during propagation and at interaction vertices. These processes determine particle masses, mixing angles and coupling constants. Approximate estimates are possible; ways to improve the calculations are pointed out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

References

  1. 1.

    J.C. Romão, J.P. Silva, A resource for signs and Feynman diagrams of the standard model. Int. J. Mod. Phys. A 27, 1230025 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    M. Veltman, Problems and difficulties in standard model and gravitation. Int. J. Mod. Phys. A 20, 1163–1167 (2005)

    ADS  Article  Google Scholar 

  3. 3.

    M. Planck, Über irreversible Strahlungsvorgänge. Sitzungsberichte der königlich preußischen Akademie der Wissenschaften zu Berlin 440–480 (1899)

  4. 4.

    N. Bohr, Atomtheorie und Naturbeschreibung (Springer, Berlin, 1931)

    MATH  Book  Google Scholar 

  5. 5.

    M. Gardner, Riddles of the Sphinx and Other Mathematical Puzzle Tales (Mathematical Association of America, New York, 1987), p. 47

    MATH  Google Scholar 

  6. 6.

    E. Battey-Pratt, T. Racey, Geometric model for fundamental particles. Int. J. Theor. Phys. 19, 437–475 (1980)

    MathSciNet  Article  Google Scholar 

  7. 7.

    L.H. Kauffman, On knots (Princeton University Press, Princeton, 1987). beginning of chapter 6

    MATH  Google Scholar 

  8. 8.

    G. Weber, Thermodynamics at boundaries. Nature 365, 792 (1993)

    ADS  Article  Google Scholar 

  9. 9.

    G. Horowitz, The Origin of Black Hole Entropy in String Theory, in Proceedings of the Pacific Conference on Gravitation and Cosmology, Seoul, Korea, 1-6 February 1996, ed. by Y.M. Cho, C.H. Lee, S.-W. Kim (World Scientific, 1998). page 46 ff, preprint at arxiv:gr-qc/9604051

  10. 10.

    E. Bianchi, Black hole entropy, loop gravity, and polymer physics. Class. Quantum Gravity 28, 114006 (2011)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    C. Schiller, A conjecture on deducing general relativity and the standard model with its fundamental constants from rational tangles of strands. Phys. Partic. Nuclei 50, 259–299 (2019)

    ADS  Article  Google Scholar 

  12. 12.

    H.-J. Treder, The planckions as largest elementary particles and as smallest test bodies. Found. Phys. 15, 161–166 (1985)

    ADS  Article  Google Scholar 

  13. 13.

    V. de Sabbata, C. Sivaram, On limiting field strengths in gravitation. Found. Phys. Lett. 6, 561–570 (1993)

    Article  Google Scholar 

  14. 14.

    C. Massa, Does the gravitational constant increase? Astrophys. Space Sci. 232, 143–148 (1995)

    ADS  Article  Google Scholar 

  15. 15.

    L. Kostro, B. Lange, Is \(c^4/G\) the greatest possible force in nature? Phys. Essays 12, 182–189 (1999)

    ADS  Article  Google Scholar 

  16. 16.

    G.W. Gibbons, The maximum tension principle in general relativity. Foundations of Physics 32, 1891–1901 (2002). preprint at arxiv:hep-th/0210109

  17. 17.

    C. Schiller, General relativity and cosmology derived from principle of maximum power or force. Int. J. Theor. Phys. 44, 1629–1647 (2005)

    MATH  Article  Google Scholar 

  18. 18.

    P.A. Zizzi, Holography, quantum geometry, and quantum information theory. Entropy 2, 39–69 (2000)

    ADS  MATH  Article  Google Scholar 

  19. 19.

    C.F. von Weizsäcker, Aufbau der Physik (Deutscher Taschenbuchverlag, Deutscher, 1985). chapters 8, 9 and 10

    MATH  Google Scholar 

  20. 20.

    J.A. Wheeler, Information, physics, quantum: the search for links, in Proceedings of the Third International Symposium on Foundations of Quantum Mechanics, Tokyo, pp. 354–368 (1989)

  21. 21.

    R. Penrose, The twistor programme. Rep. Math. Phys. 12, 65–76 (1977)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    A. Connes, Non-commutative geometry (Academic Press, Singapore, 1994)

    MATH  Google Scholar 

  23. 23.

    M.P. Bronstein, K voprosu o vozmozhnoy teorii mira kak tselogo (On the question of a possible theory of the world as a whole). Uspekhi Astronomitcheskih Nauk 3, 3–30 (1933)

    Google Scholar 

  24. 24.

    G. Gorelik, Matvei Bronstein and quantum gravity: 70th anniversary of the unsolved problem. Phys. Uspekhi 48, 1039–1053 (2005)

    ADS  Article  Google Scholar 

  25. 25.

    A. Martos, Dirac’s belt trick for spin 1/2 particle, and Belt trick for the exchange of two fermions, animations at www.motionmountain.net/videos.html#strands

  26. 26.

    J. Hise, animation at www.youtube.com/watch?v=DHFdBWU36eY

  27. 27.

    R.P. Feynman, QED- The Strange Theory of Light and Matter (Princeton University Press, Princeton, 1988). pages 85 ff

    Book  Google Scholar 

  28. 28.

    D. Hestenes, Zitterbewegung in quantum mechanics. Found. Phys. 40, 1–54 (2010)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    D. Hestenes, Quantum mechanics of the electron particle-clock, preprint at arxiv:1910.10478, and references therein

  30. 30.

    D. Hestenes, Zitterbewegung structure in electrons and photons, preprint at arxiv:1910.11085, and references therein

  31. 31.

    V. Fock, D. Iwanenko, Über eine mögliche geometrische Deutung der relativistischen Quantentheorie. Zeitschrift für Physik 54, 798–802 (1929)

    ADS  MATH  Article  Google Scholar 

  32. 32.

    V. Simulik, I. Krivsky, Once more on the derivation of the Dirac equation, preprint at arxiv:1309.0573, and references therein

  33. 33.

    IYu. Krivsky, V.M. Simulik, I.L. Lamer, T.M. Zajac, The Dirac equation as the consequence of the quantum-mechanical spin 1/2 doublet model. TWMS J. Appl. Eng. Math. 3, 62–74 (2013)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    V.M. Simulik, Relativistic Quantum Mechanics and Field Theory of Arbitrary Spin (Nova Science, Nova, 2020). chapter 2

    Google Scholar 

  35. 35.

    L. Lerner, Derivation of the Dirac equation from a relativistic representation of spin. Eur. J. Phys. 17, 172–175 (1996)

    MathSciNet  Article  Google Scholar 

  36. 36.

    A.O. Barut, Brief history and recent developments in electron theory and quantumelectrodynamics, in The Electron-Fundamental Theories of Physics, ed. by D. Hestenes, A. Weingartshofer (Springer, Berlin, 1991), pp. 105–148

    Google Scholar 

  37. 37.

    S. Kochen, E. Specker, The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–85 (1967)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    C. Schiller, The strand model – a speculation on unification, MotionMountain.net (2009) chapter 8

  39. 39.

    B. Russell, The ABC of Relativity (George Allen & Unwin, New York, 1958)

    Google Scholar 

  40. 40.

    J. Schwinger, Quantum Mechanics-Symbolism of Atomic Measurements (Springer, Berlin, 2001)

    MATH  Google Scholar 

  41. 41.

    See, for example, R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics – Electrodynamics, second edition (1964) chapter 15, discussion of equation (15.29), available online at www.feynmanlectures.caltech.edu/II_15.html

  42. 42.

    F. Wilczek, A. Zee, Appearance of gauge structures in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    A. Shapere, F. Wilczek, Self-propulsion at low Reynolds number. Phys. Rev. Lett. 58, 2051–2054 (1987)

    ADS  MATH  Article  Google Scholar 

  44. 44.

    A. Shapere, F. Wilczek, Gauge kinematics of deformable bodies. Am. J. Phys. 57, 514–518 (1989)

    ADS  Article  Google Scholar 

  45. 45.

    K. Reidemeister, Elementare Begründung der Knotentheorie. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 5, 24–32 (1926)

    MATH  Article  Google Scholar 

  46. 46.

    J.A. Heras, Can Maxwell’s equations be obtained from the continuity equation? Am. J. Phys. 75, 652–657 (2007)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    L. Burns, Maxwell’s equations are universal for locally conserved quantities. Adv. Appl. Cliff. Algebr. 29, 62 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Advances in High Energy Physics 2013, 490495 (2013). preprint at arxiv:1301.0099

  49. 49.

    ACME Collaboration: V. Andreev et al., Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018)

  50. 50.

    P.A. Zyla et al., (Particle Data Group), The review of particle physics. Progress of Theoretical and Experimental Physics 2020, 083C01 (2020)

  51. 51.

    D. Hanneke, S. Fogwell Hoogerheide, G. Gabrielse, Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment. Phys. Rev. A 83, 052122 (2011)

    ADS  Article  Google Scholar 

  52. 52.

    T. Aoyama, T. Kinoshita, M. Nio, Revised and improved value of the QED tenth-order electron anomalous magnetic moment. Phys. Rev. D 97, 036001 (2018)

    ADS  Article  Google Scholar 

  53. 53.

    D.J. Broadhurst, D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    D. Kreimer, How useful can knot and number theory be for loop calculations? Acta Physica Polonica B 29, 2865–2873 (1998). preprint at arxiv:hep-th/9807125

  55. 55.

    T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, preprint at arxiv:2006.04822

  56. 56.

    J.C. Hart, G.K. Francis, L.H. Kauffman, Visualizing quaternion rotation. ACM Trans. Graph. 13, 256–276 (1994)

    Article  Google Scholar 

  57. 57.

    D. Curtin, R. Essig, S. Gori, P. Jaiswal, A. Katz, T. Liu, Z. Liu, D. McKeen, J. Shelton, M. Strassler, Z. Surujon, B. Tweedie, Y.-M. Zhong, Exotic decays of the 125 GeV Higgs boson. Phys. Rev. D 90, 075004 (2014)

    ADS  Article  Google Scholar 

  58. 58.

    G.R. Farrar, Z. Wang, X. Xu, Dark matter particle in QCD, preprint at arxiv:2007.10378

  59. 59.

    M. Bashkanov, A new possibility for light-quark dark matter. Journal of Physics G 47, 03LT01 (2020). preprint at arxiv:2001.08654

  60. 60.

    M. Stone (ed.), Bosonization (World Scientific, 1994)

  61. 61.

    Experimental progress about neutrino mixing across the world is kept up do date on the website www.nu-fit.org

  62. 62.

    P.F. de Salas, D.V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C.A. Ternes, M. Tórtola, J.W.F. Valle, 2020 Global reassessment of the neutrino oscillation picture, preprint at arxiv:2006.11237

  63. 63.

    M.J. Dolinski, A.W.P. Poon, W. Rodejohann, Neutrinoless Double-Beta Decay: Status and Prospects. Annual Review of Nuclear and Particle Science 69, 219–251 (2019). preprint at arxiv:1902.04097

  64. 64.

    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, A. Strumia, Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B 709, 222–228 (2012)

    ADS  Article  Google Scholar 

  65. 65.

    V. Katritch, J. Bednar, D. Michoud, R.G. Sharein, J. Dubochet, A. Stasiak, Geometry and physics of knots. Nature 384, 142–145 (1996)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  66. 66.

    E.J. Janse van Rensburg, E. Orlandini, D.W. Sumners, M.C. Tesi, S.G. Whittington, The writhe of knots in the cubic lattice. J. Knot Theory Ramif. 6, 31–44 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  67. 67.

    P.W. Graham, D.E. Kaplan, S. Rajendran, Cosmological relaxation of the electroweak scale. Phys. Rev. Lett. 115, 221801 (2015)

    ADS  Article  Google Scholar 

  68. 68.

    R.S. Gupta, J.Y. Reiness, M. Spannowsky, All-in-one relaxion, a unified solution to five BSM puzzles. Phys. Rev. D 100, 055003 (2019)

    ADS  Article  Google Scholar 

  69. 69.

    H.B. Nielsen, P. Olesen, A vortex line model for dual strings. Nucl. Phys. B 61, 45–61 (1973)

    ADS  Article  Google Scholar 

  70. 70.

    B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Reports 97, 31–145 (1983)

    ADS  Article  Google Scholar 

  71. 71.

    C.B. Thorn, Subcritical string and large N QCD, preprint at arxiv:0809.1085

  72. 72.

    K. Gottfried, V.F. Weisskopf, Concepts of Particle Physics (Clarendon Press, Oxford, 1984)

    Google Scholar 

  73. 73.

    R. Aaij et al., (LHCb Collaboration), Observation of CP violation in charm decays. Physical Review Letters 122, 211803 (2019)

  74. 74.

    W. Drechsler, Das Regge-Pol-Modell. Naturwissenschaften 59, 325–336 (1972)

    ADS  Article  Google Scholar 

  75. 75.

    A.J. Niemi, Are glueballs knotted closed strings?, in Color confinement and hadrons in quantum chromodynamics, ed. by H. Suganuma, N. Ishii, M. Oka, H. Enyo, T. Hatsuda, T. Kunihiro, K. Yazaki (World Scientific, 2003), pp. 127–129. preprint at arxiv:hep-th/0312133

  76. 76.

    K. Kondo, A. Ono, A. Shibata, T. Shinohara, T. Murakami, Glueball mass from quantized knot solitons and gauge-invariant gluon mass. Journal of Physics A 39, 13767–13782 (2006). preprint at arxiv:hep-th/0604006

  77. 77.

    U. Amaldi, W. de Boer, H. Fürstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 260, 447–455 (1991)

    ADS  Article  Google Scholar 

  78. 78.

    A. Deura, S.J. Brodsky, G.F. de Téramond, The QCD running coupling. Progress in Particle and Nuclear Physics 90, 1–74 (2016). preprint at arxiv:1604.08082

  79. 79.

    A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. J. Exp. Theor. Phys. Lett. 5, 24–27 (1967)

    Google Scholar 

  80. 80.

    A. Riotto, M. Trodden, Recent progress in baryogenesis. Annu. Rev. Nucl. Partic. Sci. 49, 35–75 (1999)

    ADS  Article  Google Scholar 

  81. 81.

    J.M. Cline, Baryogenesis, preprint at arxiv:hep-ph/0609145

  82. 82.

    M.B. Gavela, P. Hernández, J. Orloff, O. Péne, Standard model CP-violation and baryon asymmetry. Mod. Phys. Lett. A 9, 795–809 (1994)

    ADS  Article  Google Scholar 

  83. 83.

    M. Göckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stüben, Is there a Landau pole problem in QED? Physical Review Letters 80, 4119–4122 (1998). preprint at arxiv:hep-th/9712244

  84. 84.

    A.J. Buras, Asymptotic freedom in deep inelastic processes in the leading order and beyond. Rev. Mod. Phys. 52, 199–276 (1980)

    ADS  Article  Google Scholar 

  85. 85.

    R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety (World Scientific, Singapore, 2017)

    MATH  Book  Google Scholar 

  86. 86.

    N. Engelhardt, S. Fischetti, Locality from quantum gravity: all or nothing. Int. J. Mod. Phys. D 26, 1743028 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  87. 87.

    S. Popescu, Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264–270 (2014)

    Article  Google Scholar 

  88. 88.

    T. Jacobson, Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  89. 89.

    T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rep. Progr. Phys. 73, 046901 (2010)

    ADS  Article  Google Scholar 

  90. 90.

    E.P. Verlinde, On the origin of gravity and the laws of Newton. J. High Energy Phys. 04, 029 (2011)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  91. 91.

    V. Cardoso, T. Ikeda, C.J. Moore, C.-M. Yoo, Remarks on the maximum luminosity. Phys. Rev. D 97, 084013 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  92. 92.

    LIGO Scientific Collaboration and Virgo Collaboration, GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Physical Review X 9, 031040 (2019). preprint at arxiv:1811.12907

  93. 93.

    LIGO Scientific Collaboration and Virgo Collaboration, Properties and astrophysical implications of the 150 Msun binary black hole merger GW190521. Astrophysical Journal Letters 900, L13 (2020)

  94. 94.

    N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa, The string landscape, black holes and gravity as the weakest force. Journal of High Energy Physics 06, 060 (2007). preprint at arxiv:hep-th/0601001

  95. 95.

    T. Rothman, S. Boughn, Can gravitons be detected? Foundations of Physics 36, 1801–1825 (2006). preprint at arXiv:gr-qc/0601043

  96. 96.

    H.C. Ohanian, Smearing of propagators by gravitational fluctuations on the Planck scale. Phys. Rev. D 60, 104051 (1999)

    ADS  Article  Google Scholar 

  97. 97.

    J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Quantum-gravitational diffusion and stochastic fluctuations in the velocity of light. Gener. Relat. Grav. 32, 127–144 (2000)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  98. 98.

    C.H.-T. Wang, R. Bingham, J.T. Mendonça, Probing spacetime fluctuations using cold atom traps. AIP Conf. Proc. 1421, 203–211 (2012)

    ADS  Article  Google Scholar 

  99. 99.

    H.W. Hamber, L.H.S. Yu, Gravitational fluctuations as an alternative to inflation. Universe 5, 31 (2019)

    ADS  Article  Google Scholar 

  100. 100.

    Z.-Z. Xing, Quark mass hierarchy and flavor mixing puzzles. Int. J. Mod. Phys. A 29, 1430067 (2014)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  101. 101.

    C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relat. 17, 4 (2017)

    ADS  MATH  Article  Google Scholar 

  102. 102.

    M. Shaposhnikov, A. Shkerin, S. Zell, Standard model meets gravity: electroweak symmetry breaking and inflation, preprint at arxiv:2001.09088

  103. 103.

    S. Hossenfelder, Quantum superpositions of the speed of light. Found. Phys. 42, 1452–1468 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  104. 104.

    A.G. Lisi, L. Smolin, S. Speziale, Unification of gravity, gauge fields, and Higgs bosons. J. Phys. A 43, 445401 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  105. 105.

    C. Kiefer, Quantum Gravity (Oxford University Press, Oxford, 2007)

    MATH  Book  Google Scholar 

  106. 106.

    C. Rovelli, Loop quantum gravity. Living Rev. Relat. 11, 5 (2008)

    ADS  MATH  Article  Google Scholar 

  107. 107.

    C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)

    MATH  Book  Google Scholar 

  108. 108.

    H.W. Hamber, Quantum Gravitation (Springer, Berlin, 2009)

    MATH  Google Scholar 

  109. 109.

    R. Gambini, J. Pullin, Loop Quantum Gravity for Everyone (World Scientific, Singapore, 2020)

    MATH  Book  Google Scholar 

  110. 110.

    A. Eichhorn, Asymptotically safe gravity, preprint at arxiv:2003.00044

  111. 111.

    M. Hall, M. Reginatto, Ensembles on Configuration Space: Classical, Quantum and Beyond (Springer, Berlin, 2016). chapters 10 and 11

    MATH  Book  Google Scholar 

  112. 112.

    G. Ballesteros, J. Redondo, A. Ringwald, C. Tamarit, Standard Model-axion-seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke. J. Cosmol. Astropart. Phys. 2017, 001 (2017)

    Article  Google Scholar 

  113. 113.

    A. Salvio, Solving the standard model problems in softened gravity. Phys. Rev. D 94, 096007 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  114. 114.

    J. Ellis, Where is particle physics going? Int. J. Mod. Phys. A 32, 1746001 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  115. 115.

    P. Langacker, Status and phenomenology of the standard model. Czechosl. J. Phys. 55, B501–B514 (2005)

    Google Scholar 

  116. 116.

    H.M. Lee, Lectures on physics beyond the standard model, preprint at arxiv:1907.12409

  117. 117.

    J.D. Barrow, Theories of Everything: The Quest for Ultimate Explanation (Clarendon Press, New York, 1991)

    MATH  Google Scholar 

  118. 118.

    L. Lederman, D. Teresi, The God Particle (Dell Publishing, New York, 1993). chapter 1

    Book  Google Scholar 

  119. 119.

    S. Weinberg, Effective field theory, past and future, preprint at arxiv:0908.1964

  120. 120.

    M. Shaposhnikov, Is there a new physics between electroweak and Planck scale?, preprint at arxiv:0708.3550

  121. 121.

    M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  122. 122.

    N. Arkani-Hamed, A. Hodges, J. Trnka, Positive amplitudes in the amplituhedron, preprint at arxiv:1412.8478

  123. 123.

    C. Csáki, The minimal supersymmetric standard model. Mod. Phys. Lett. A 11, 599–613 (1996)

    ADS  Article  Google Scholar 

  124. 124.

    X.-G. Wen, From new states of matter to a unification of light and electrons, preprint at arxiv:cond-mat/0508020

  125. 125.

    T.P. Singh, Trace dynamics and division algebras: towards quantum gravity and unification, preprint at arxiv:2009.05574

  126. 126.

    J.S. Avrin, A visualizable representation of the elementary particles. J. Knot Theory Ramif. 14, 131–176 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  127. 127.

    R.J. Finkelstein, A field theory of knotted solitons, preprint at arxiv:hep-th/0701124 and references therein

  128. 128.

    S.K. Ng, On a knot model of the \(\pi ^+\) meson, preprint at arxiv:hep-th/0210024, and S.K. Ng, On a classification of mesons, preprint at arxiv:hep-ph/0212334

  129. 129.

    S. Bilson-Thompson, J. Hackett, L. Kauffman, Particle topology, braids, and braided belts, preprint at arxiv:0903.1376 and references therein

  130. 130.

    R.V. Buniy, T.W. Kephart, Glueballs and the universal energy spectrum of tight knots and links, preprint at arxiv:hep-ph/0408027 and references therein

  131. 131.

    M. Botta Cantcheff, Spacetime geometry as statistic ensemble of strings, preprint at arxiv:1105.3658

  132. 132.

    S. Carlip, Dimension and dimensional reduction in quantum gravity. Classical and Quantum Gravity 34, 193001 (2017). preprint at arxiv:1705.05417

  133. 133.

    L.H. Kauffman, S.J. Lomonaco, Quantum knots, preprint at arxiv:quant-ph/0403228

  134. 134.

    P. Jizba, H. Kleinert, F. Scardigli, Uncertainty relation on world crystal and its applications to micro black holes. Phys. Rev. D 81, 084030 (2010)

    ADS  Article  Google Scholar 

  135. 135.

    C. Castro, A Clifford algebra-based grand unification program of gravity and the Standard Model: a review study. Can. J. Phys. 92, 1501–1527 (2014)

    ADS  Article  Google Scholar 

  136. 136.

    O.C. Stoica, Leptons, Quarks, and Gauge from the Complex Clifford Algebra \(\mathbb{C}\ell _6 \). Adv. Appl. Clifford Algebr. 28, 52 (2018)

    MATH  Article  Google Scholar 

  137. 137.

    C. Furey, Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra. Phys. Lett. B 785, 84–89 (2018)

    ADS  MATH  Article  Google Scholar 

  138. 138.

    G.E. McClellan, Using raising and lowering operators from geometric algebra for electroweak theory in particle physics. Adv. Appl. Clifford Algebr. 29, 90 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  139. 139.

    A.B. Gillard, N.G. Gresnigt, Three fermion generations with two unbroken gauge symmetries from the complex sedenions. Eur. Phys. J. C 79, 446 (2019)

    ADS  Article  Google Scholar 

  140. 140.

    C. Daviau, J. Bertrand, Th Socroun, D. Girardot, Developing a Theory of Everything. Annales de la Fondation Louis de Broglie (2020)

Download references

Acknowledgements

The author thanks Eric Rawdon for his ropelength calculations. The author also thanks Stephen Boughn, Volodimir Simulik, Jason Hise, Steven Carlip, Claus Ernst, Louis Kauffman, Tyler Spaeth, Jason Cantarella, Marcus Platzer, Antonio Martos, Ralf Metzler, Andrzej Stasiak, Franz Aichinger, Thomas Racey and Pierre Lacombe for discussions. The present work was partly supported by a grant of the Klaus Tschira Foundation. This work is dedicated to the memory of Peter Schiller.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Schiller.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schiller, C. Testing a conjecture on the origin of the standard model. Eur. Phys. J. Plus 136, 79 (2021). https://doi.org/10.1140/epjp/s13360-020-01046-8

Download citation