Skip to main content

Complete set of GW polarization modes in higher-derivative \(f(R,\square R,T)\) theories of gravity

Abstract

In this paper, we investigate the gravitational waves in a particular class of alternative theories of gravity which is known as higher-derivative \(f(R,\square R,T)\) gravity theory. In low curvature regime and by using Newman–Penrose analysis for the linear order of the field equations, we show that in addition to the usual plus and cross polarization modes which appear in general relativity, all other modes can exist too. Actually, according to our analysis, in such a theory by choosing the proper values from the parameter space of the model, a complete set of gravitational wave polarization modes can be produced in this concept.

This is a preview of subscription content, access via your institution.

References

  1. B. Abbott et al., LIGO scientific collaboration and virgo collaboration. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. B.P. Abbott et al., Phys. Rev. Lett. 119(14), 141101 (2017)

    Article  ADS  Google Scholar 

  3. D.M. Eardley, D.L. Lee, A.P. Lightman, Phys. Rev. D 8, 3308 (1973)

    Article  ADS  Google Scholar 

  4. P. Amaro-Seoane et al., GW Notes 6, 4–110 (2013)

    Google Scholar 

  5. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1–189 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  9. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  10. M.J.S. Houndjo, M.E. Rodrigues, N.S. Mazhari, D. Momeni, Myrzakulov, Int. J. Mod. Phys. D 26, 1750024 (2017)

    Article  ADS  Google Scholar 

  11. A. Hindawi, B.A. Ovrut, D. Waldram, Phys. Rev. D 53, 5597 (1996). arXiv:hep-th/9509147

    Article  ADS  MathSciNet  Google Scholar 

  12. Z. Yousaf, M. Sharif, M. Ilyas, M.Z. Bhatti, Int. J. Geom. Meth. Mod. Phys. 15, 1850146 (2018)

    Article  Google Scholar 

  13. M. Ilyas, Z. Yousaf, M.Z. Bhatti, Mod. Phys. Lett. A 34, 1950082 (2019)

    Article  ADS  Google Scholar 

  14. S. Capozziello, C. Corda, Int. J. Mod. Phys. D 15, 1119–1150 (2006)

    Article  ADS  Google Scholar 

  15. C. Corda, JCAP 0704, 009 (2007)

    Article  ADS  Google Scholar 

  16. S. Capozziello, C. Corda, M.F. De Laurentis, Phys. Lett. B 669, 255–259 (2008)

    Article  ADS  Google Scholar 

  17. C. Corda, Eur. Phys. J. C 65, 257–267 (2010)

    Article  ADS  Google Scholar 

  18. L. Yang, C.-C. Lee, C.-Q. Geng, JCAP 1108, 029 (2011)

    Article  ADS  Google Scholar 

  19. C.P.L. Berry, J.R. Gair, Phys. Rev. D 83, 104022 (2011)

    Article  ADS  Google Scholar 

  20. K. Bamba, S. Capozziello, M. De Laurentis, S. Nojiri, D. Sez-Gmez, Phys. Lett. B 727, 194–198 (2013)

    Article  ADS  Google Scholar 

  21. S. Capozziello, A. Stabile, Astrophys. Space Sci. 358(2), 27 (2015)

    Article  ADS  Google Scholar 

  22. S. Hou, Y. Gong, Y. Liu, Eur. Phys. J. C 78, 378 (2018)

    Article  ADS  Google Scholar 

  23. Rong-jia Yang, Phys. Lett. B 784, 212–216 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Capozziello, M. Capriolo, L. Caso, Int. J. Geom. Methods Mod. Phys. 16, 1950047 (2019)

    Article  MathSciNet  Google Scholar 

  25. S. Capozziello, M. Capriolo, L. Caso, Class. Quantum Gravity 37, 235013 (2020)

    Article  ADS  Google Scholar 

  26. S. Capozziello, M. Capriolo, S. Nojiri, Phys. Lett. B 810, 135821 (2020)

    Article  MathSciNet  Google Scholar 

  27. M.E.S. Alves, O.D. Miranda, J.C.N. de Araujo, Phys. Lett. B 679, 401–406 (2009)

    Article  ADS  Google Scholar 

  28. M.E.S. Alves, O.D. Miranda, J.C.N. de Araujo, Class. Quantum Gravity 27, 145010 (2010)

    Article  ADS  Google Scholar 

  29. M. Alves, P. Moraes, J. de Araujo, M. Malheiro, Phys. Rev. D 94(2), 024032 (2016). [17]

    Article  ADS  MathSciNet  Google Scholar 

  30. H.Rizwana Kausar, L. Philippoz, P. Jetzer, Phys. Rev. D 93(12), 124071 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Sharif, A. Siddiqa, Astrophys. Space Sci. 362, 226 (2017)

    Article  ADS  Google Scholar 

  32. H.R. Kausar, Int. J. Mod. Phys. D 26(5), 1741010 (2017)

    Article  ADS  Google Scholar 

  33. O. Bertolami, C. Gomes, F.S.N. Lobo, Eur. Phys. J. C 78, 303 (2018)

    Article  ADS  Google Scholar 

  34. E. Newman, R. Penrose, J. Math Phys. 3, 566 (1962)

    Article  ADS  Google Scholar 

  35. R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (Elsevier Science Publishers, Netherlands, 1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh Azizi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haghshenas, M., Azizi, T. Complete set of GW polarization modes in higher-derivative \(f(R,\square R,T)\) theories of gravity. Eur. Phys. J. Plus 136, 4 (2021). https://doi.org/10.1140/epjp/s13360-020-01007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01007-1