Abstract
In this paper, we investigate the gravitational waves in a particular class of alternative theories of gravity which is known as higher-derivative \(f(R,\square R,T)\) gravity theory. In low curvature regime and by using Newman–Penrose analysis for the linear order of the field equations, we show that in addition to the usual plus and cross polarization modes which appear in general relativity, all other modes can exist too. Actually, according to our analysis, in such a theory by choosing the proper values from the parameter space of the model, a complete set of gravitational wave polarization modes can be produced in this concept.
This is a preview of subscription content, access via your institution.
References
B. Abbott et al., LIGO scientific collaboration and virgo collaboration. Phys. Rev. Lett. 116, 061102 (2016)
B.P. Abbott et al., Phys. Rev. Lett. 119(14), 141101 (2017)
D.M. Eardley, D.L. Lee, A.P. Lightman, Phys. Rev. D 8, 3308 (1973)
P. Amaro-Seoane et al., GW Notes 6, 4–110 (2013)
S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)
T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1–189 (2012)
S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)
A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)
T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)
M.J.S. Houndjo, M.E. Rodrigues, N.S. Mazhari, D. Momeni, Myrzakulov, Int. J. Mod. Phys. D 26, 1750024 (2017)
A. Hindawi, B.A. Ovrut, D. Waldram, Phys. Rev. D 53, 5597 (1996). arXiv:hep-th/9509147
Z. Yousaf, M. Sharif, M. Ilyas, M.Z. Bhatti, Int. J. Geom. Meth. Mod. Phys. 15, 1850146 (2018)
M. Ilyas, Z. Yousaf, M.Z. Bhatti, Mod. Phys. Lett. A 34, 1950082 (2019)
S. Capozziello, C. Corda, Int. J. Mod. Phys. D 15, 1119–1150 (2006)
C. Corda, JCAP 0704, 009 (2007)
S. Capozziello, C. Corda, M.F. De Laurentis, Phys. Lett. B 669, 255–259 (2008)
C. Corda, Eur. Phys. J. C 65, 257–267 (2010)
L. Yang, C.-C. Lee, C.-Q. Geng, JCAP 1108, 029 (2011)
C.P.L. Berry, J.R. Gair, Phys. Rev. D 83, 104022 (2011)
K. Bamba, S. Capozziello, M. De Laurentis, S. Nojiri, D. Sez-Gmez, Phys. Lett. B 727, 194–198 (2013)
S. Capozziello, A. Stabile, Astrophys. Space Sci. 358(2), 27 (2015)
S. Hou, Y. Gong, Y. Liu, Eur. Phys. J. C 78, 378 (2018)
Rong-jia Yang, Phys. Lett. B 784, 212–216 (2018)
S. Capozziello, M. Capriolo, L. Caso, Int. J. Geom. Methods Mod. Phys. 16, 1950047 (2019)
S. Capozziello, M. Capriolo, L. Caso, Class. Quantum Gravity 37, 235013 (2020)
S. Capozziello, M. Capriolo, S. Nojiri, Phys. Lett. B 810, 135821 (2020)
M.E.S. Alves, O.D. Miranda, J.C.N. de Araujo, Phys. Lett. B 679, 401–406 (2009)
M.E.S. Alves, O.D. Miranda, J.C.N. de Araujo, Class. Quantum Gravity 27, 145010 (2010)
M. Alves, P. Moraes, J. de Araujo, M. Malheiro, Phys. Rev. D 94(2), 024032 (2016). [17]
H.Rizwana Kausar, L. Philippoz, P. Jetzer, Phys. Rev. D 93(12), 124071 (2016)
M. Sharif, A. Siddiqa, Astrophys. Space Sci. 362, 226 (2017)
H.R. Kausar, Int. J. Mod. Phys. D 26(5), 1741010 (2017)
O. Bertolami, C. Gomes, F.S.N. Lobo, Eur. Phys. J. C 78, 303 (2018)
E. Newman, R. Penrose, J. Math Phys. 3, 566 (1962)
R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (Elsevier Science Publishers, Netherlands, 1982)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Haghshenas, M., Azizi, T. Complete set of GW polarization modes in higher-derivative \(f(R,\square R,T)\) theories of gravity. Eur. Phys. J. Plus 136, 4 (2021). https://doi.org/10.1140/epjp/s13360-020-01007-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-020-01007-1