Skip to main content

Advertisement

Log in

Structural and radiation shielding features for a new series of borate glass samples: part I

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, five glass samples with a composition (80 − x) B2O3–10ZnO–10CdO–x BaO, where (x = 10, 15, 20, 25, and 30 mol%), were fabricated by a standard melt-quench method. The current glass composition structure was explored via Fourier transform infrared (FTIR) and X-ray diffraction (XRD). XRD pattern proves an absence of sharp peaks, affirming the amorphous nature of the prepared samples. FTIR spectrum within the range of 1650–400 cm−1 clarifies the functional groups’ existence and the variation in BO3 and BO4 with the addition of BaO. The obtained results show a direct relationship between the density and the BaO contents. In contrast, the relation between the BaO and Poisson’s ratio and packing density is inverse. The supplement of BaO to the glass system gradually drove to a slight reduction in glass stability. Furthermore, the mass attenuation coefficient (μ/ρ) was defined experimentally by using two sources (137Cs and 166Ho) with five energies (0.184, 0.280, 0.661, 0.710, and 0.810 MeV). This range of energy can be used in nuclear medicine fields. The excellent agreement between experimental and XCOM values is evident. Based on the experimental results, several radiation shielding properties, including linear attenuation coefficient, effective atomic number (Zeff), half-value layer, mean free path, and tenth value layer, were computed. The results indicate that the sample G5 has a superior photon shielding competence compared with other standard shielding materials. Lastly, it can conclude that the prepared glasses may be used in different sectors as a radiation shielding material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.L. Heron, R. Padovani, I. Smith, R. Czarwinski, Radiation protection of medical staff. Eur. J. Radiol. 76(1), 20–23 (2010)

    Article  Google Scholar 

  2. Y. Al-Hadeethi, M.I. Sayyed, H. Mohammed, L. Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceram. Int. 46, 251–257 (2020)

    Article  Google Scholar 

  3. M.H.A. Mhareb, Y.S.M. Alajerami, M.I. Sayyed, N. Dwaikat, M. Alqahtani, F. Alshahri, N. Saleh, N. Alonizan, T. Ghrib, S.I. Al-Dhafar, Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass. J. Non-Cryst. Solids 550, 120360 (2020)

    Article  Google Scholar 

  4. M.H.A. Mhareb, Y.S.M. Alajerami, N. Dwaikat, M.S. Al-Buriahi, M. Alqahtani, F. Alshahri, N. Saleh, N. Alonizan, M.A. Saleh, M.I. Sayyed, Investigation of photon, neutron and proton shielding features of H3BO3–ZnO–Na2O–BaO glass system. Nucl. Eng. Technol. (2020). https://doi.org/10.1016/j.net.2020.07.035

    Article  Google Scholar 

  5. Y.S. Alajerami, D.A. Drabold, M.H.A. Mhareb, K.N. Subedi, K. Leslee, A. Cimatu, G. Chen, Physical, structural, and shielding properties of cadmium bismuth borate-based glasses. J. Appl. Phys. 127(17), 175102 (2020)

    Article  ADS  Google Scholar 

  6. Q. Chen, K.A. Naseer, K. Marimuthu, P.S. Kumar, B. Miao, K.A. Mahmoud, M.I. Sayyed, Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems. J. Aust. Ceram. Soc. (2020). https://doi.org/10.1007/s41779-020-00531-8

    Article  Google Scholar 

  7. R.M. Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, G. Saleh, M.K. Hamad, K.A. Ziq, A comprehensive ionizing radiation shielding study of FexSe0.5Te0.5 alloys with various iron concentrations. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.157636

    Article  Google Scholar 

  8. B. Aygün, High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 52, 647–653 (2020)

    Article  Google Scholar 

  9. M.K. Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, G. Saleh, Y. Maswadeh, K.A. Ziq, Radiation shielding properties of Nd0.6Sr0.4Mn1–yNiyO3 substitute with different concentrations of nickle. Radiat. Phys. Chem. 174, 108920 (2020)

    Article  Google Scholar 

  10. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020). https://doi.org/10.1016/j.ceramint.2020.08.055

    Article  Google Scholar 

  11. F. Akman, Z. Khattari, M. Kaçal, M. Sayyed, F. Afaneh, The radiation shielding features for some silicide, boride and oxide types ceramics. Radiat. Phys. Chem. 160, 9–14 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.001

    Article  ADS  Google Scholar 

  12. C. Lee, Y. Lee, K. Lee, Cracking effect on gamma-ray shielding performance in concrete structure. Prog. Nucl. Energy 49, 303–312 (2007). https://doi.org/10.1016/j.pnucene.2007.01.006

    Article  ADS  Google Scholar 

  13. B. Aygün, E. Şakar, T. Korkut, M. Sayyed, A. Karabulut, New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochim. Acta 107, 359–367 (2019). https://doi.org/10.1515/ract-2018-3075

    Article  Google Scholar 

  14. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concr. Comp. 28, 153–157 (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  Google Scholar 

  15. A. Abdalsalam, E. Şakar, K. Kaky, M. Mhareb, B. Cevz Şakar, M. Sayyed et al., Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat. Phys. Chem. 168, 108537 (2020). https://doi.org/10.1016/j.radphyschem.2019.108537

    Article  Google Scholar 

  16. A. Abdalsalam, M. Sayyed, T.A. Hussein, E. Şakar, M. Mhareb, B. Ceviz Şakar et al., A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites. Chem. Phys. 523, 92–98 (2019). https://doi.org/10.1016/j.chemphys.2019.04.013

    Article  Google Scholar 

  17. M.I. Sayyed, A.H. Abdalsalam, M.M. Taki, M.H.A. Mhareb, B. Alim, A. Baltakesmez, E. Şakar, MoO3 reinforced Ultra high molecular weight PE for neutrons shielding applications. Radiat. Phys. Chem. 172, 108852 (2020)

    Article  Google Scholar 

  18. S. Singh, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Barium–borate–flyash glasses: as radiation shielding materials. Nucl. Instrum. Methods B 266(1), 140–146 (2008)

    Article  ADS  Google Scholar 

  19. Y.S.M. Alajerami, M.H.A. Mhareb, K. Abushab, K. Ramadan, Effect of co-doping of lithium on the dosimetric properties of dysprosium-doped sodium borate glass system. Physica B 558, 142–145 (2019)

    Article  ADS  Google Scholar 

  20. S. Hashim, M.H.A. Mhareb, S.K. Ghoshal, Y.S.M. Alajerami, M.I. Saripan, D.A. Bradley, Luminescence features of dysprosium and phosphorus oxide co-doped lithium magnesium borate glass. Radiat. Phys. Chem. 137, 45–48 (2017)

    Article  ADS  Google Scholar 

  21. N.A. Razak, S. Hashim, M.H.A. Mhareb, Y.S.M. Alajerami, S.A. Azizan, N. Tamchek, Impact of Eu3+ ions on physical and optical properties of Li2O-Na2O-B2O3 glass. Chin. J. Chem. Phys. 29(3), 395 (2016)

    Article  Google Scholar 

  22. S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Cryst. Solids 512, 60–71 (2019)

    Article  ADS  Google Scholar 

  23. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51(5), 2199–2242 (2016)

    Article  ADS  Google Scholar 

  24. R.S. Harini, E. Manikandan, S. Anthonysamy, V. Chandramouli, D. Eswaramoorthy, Combustion synthesis of novel boron carbide. AIP Conf. Proc. Am. Inst. Phys. 1512(1), 1244–1245 (2013)

    Article  ADS  Google Scholar 

  25. K.M. Kaky, M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system. J. Non-Cryst. Solids 546, 120272 (2020)

    Article  Google Scholar 

  26. A.H. Shah, M.B. Ahamed, E. Manikandan, R. Chandramohan, M. Iydroose, Magnetic, optical and structural studies on Ag-doped ZnO nanoparticles. J. Mater. Sci. Mater. El. 24(7), 2302–2308 (2013)

    Article  Google Scholar 

  27. E. Manikandan, G. Kavitha, J. Kennedy, Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40(10), 16065–16070 (2014)

    Article  Google Scholar 

  28. E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaza, Nanoflower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin films: structural, optical and electronic properties. Mater. Lett. 131, 225–228 (2014)

    Article  Google Scholar 

  29. E. Manikandan, J. Kennedy, G. Kavitha, K. Kaviyarasu, M. Maaza, B.K. Panigrahi, U.K. Mudali, Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J. Alloys Compd. 647, 141–145 (2015)

    Article  Google Scholar 

  30. B. Sathyaseelan, E. Manikandan, K. Sivakumar, J. Kennedy, M. Maaza, Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application. J. Alloys Compd. 651, 479–482 (2015)

    Article  Google Scholar 

  31. K.H.S. Shaaban, W.M. Abd-Allah, Y.B. Saddeek, Gamma rays interactions with CdO-doped lead silicate glasses. Opt. Quant. Electron. 52(3), 1–17 (2020)

    Google Scholar 

  32. M.J. Berger, J.H. Hubbell, XCOM: photon cross sections on a personal computer. No. NBSIR-87-3597, National Bureau of Standards, Center for Radiation Research, Washington, DCUSA (1987)

  33. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  34. K. Kaur, K.J. Singh, V. Anand, Correlation of gamma ray shielding and structural properties of PbO–BaO–P2O5 glass system. Nucl. Eng. Des. 285, 31–38 (2015)

    Article  Google Scholar 

  35. A. Saeed, Y.H. Elbashar, S.U. El Khameesy, A novel barium borate glasses for optical applications. Silicon 10(2), 569–574 (2018)

    Article  Google Scholar 

  36. D. Singh, K. Singh, G. Singh, S. Mohan, M. Arora, G. Sharma, Optical and structural properties of ZnO–PbO–B2O3 and ZnO–PbO–B2O3–SiO2 glasses. J. Phys. Condens. Matter. 20(7), 075228 (2008)

    Article  ADS  Google Scholar 

  37. M.I. Sayyed, Kawa M. Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, S.O. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Cryst. Solids 507, 30–37 (2019)

    Article  ADS  Google Scholar 

  38. G.P. Singh, D.P. Singh, Spectroscopic study of ZnO doped CeO2–PbO–B2O3 glasses. Physica B 406(18), 3402–3405 (2011)

    Article  ADS  Google Scholar 

  39. M.I. Sayyed, K.M. Kaky, M.H.A. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, M.A. Bourham, Borate multicomponent of bismuth rich glasses for gamma radiation shielding application. Radiat. Phys. Chem. 161, 77–82 (2019)

    Article  ADS  Google Scholar 

  40. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2–PbO–Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  Google Scholar 

  41. S. Aly, Y.H. Elbashar, Optical properties of high density barium borate glass for gamma ray shielding applications. Opt. Quantum Electron. 48(1), 1 (2016)

    Article  Google Scholar 

  42. M.H.A. Mhareb, M.A. Almessiere, M.I. Sayyed, Y.S.M. Alajerami, Physical, structural, optical and photons attenuation attributes of lithium-magnesium-borate glasses: role of Tm2O3 doping. Optik 182, 821–831 (2019)

    Article  ADS  Google Scholar 

  43. C. Sriwunkum, T. Nutaro, A. Saiz, The comparative study of the radiation shielding of PbO–Li2O–B2O3 glass system by using FLUKA to XCOM and experimental data. J. Phys. Conf. Ser. 1144(1), 012135 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, for providing funding for this study (Grant No. 2020-068-BASRC) and gratefully acknowledge the use of the services and facilities of the Basic and Applied Scientific Research Center at Imam Abdulrahman Bin Faisal University. The authors also wish to thank Dr. Nidal Dwaikat, who designed the gamma-ray irradiation system and carried out the experimental part in the Physics department at KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. H. A. Mhareb or M. I. Sayyed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhareb, M.H.A., Sayyed, M.I., Alajerami, Y.S.M. et al. Structural and radiation shielding features for a new series of borate glass samples: part I. Eur. Phys. J. Plus 136, 26 (2021). https://doi.org/10.1140/epjp/s13360-020-00984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00984-7

Navigation