Impact of Kuchowicz metric function on gravastars in f(RT) theory

Abstract

This paper discusses the configuration of gravitational vacuum star or gravastar with the impact of geometry and matter coupling present in f(RT) gravity. The gravastar is also conceptualized as a substitute for a black hole which is illustrated by three geometries known as (1) the interior geometry, (2) the intermediate thin-shell and (3) the exterior geometry. For a particular f(RT) model, we analyze these geometries corresponding to Kuchowicz metric function. We evaluate another metric potential for the interior domain as well as the intermediate shell which is non-singular for both domains. The Schwarzschild metric is adopted to demonstrate the exterior geometry of gravastar, while the numerical values of unknown constants are calculated through boundary conditions. Finally, we discuss different features of gravastar regions like proper length, energy, surface redshift as well as equation of state parameter. We conclude that the gravastar model can be regarded as a successful replacement of the black hole in the context of this gravity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    P. Mazur, E. Mottola, Proc. Natl. Acad. Sci. USA 101, 9545 (2004)

    ADS  Article  Google Scholar 

  2. 2.

    G. Chapline et al., Int. J. Mod. Phys. A 18, 3587 (2003)

    ADS  Article  Google Scholar 

  3. 3.

    F.S.N. Lobo, Class. Quantum Grav. 23, 1525 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    C.B.M.H. Chirenti, L. Rezzolla, Phys. Rev. D 78, 084011 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    M. Visser, D.L. Wiltshire, Class. Quantum Grav. 21, 1135 (2004)

    ADS  Article  Google Scholar 

  6. 6.

    B.M.N. Carter, Class. Quantum Grav. 22, 4551 (2005)

    ADS  Article  Google Scholar 

  7. 7.

    N. Bilić, G.B. Tupper, R.D. Viollier, J. Cosmol. Astropart. Phys. 02, 013 (2006)

    ADS  Article  Google Scholar 

  8. 8.

    D. Horvat, S. Ilijić, Class. Quantum Grav. 24, 5637 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    A.E. Broderick, R. Narayan, Class. Quantum Grav. 24, 659 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    C.B.M.H. Chirenti, L. Rezzolla, Class. Quantum Grav. 24, 4191 (2007)

    ADS  Article  Google Scholar 

  11. 11.

    P. Rocha et al., J. Cosmol. Astropart. Phys. 11, 010 (2008)

    ADS  Article  Google Scholar 

  12. 12.

    V. Cardoso et al., Phys. Rev. D 77, 124044 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    T. Harko, Z. Kovács, F.S.N. Lobo, Class. Quantum Grav. 26, 215006 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    P. Pani et al., Phys. Rev. D 80, 124047 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    F.S.N. Lobo, A.V.B. Arellano, Class. Quantum Grav. 24, 1069 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    D. Horvat, S. Ilijić, A. Marunovic, Class. Quantum Grav. 26, 025003 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    B.V. Turimov, B.J. Ahmedov, A.A. Abdujabbarov, Mod. Phys. Lett. A 24, 733 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    T. Harko et al., Phys. Rev. D 84, 024020 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    Z. Haghani et al., Phys. Rev. D 88, 044023 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    S.D. Odintsov, D. Sáez-Gómes, Phys. Lett. B 725, 437 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    M. Sharif, A. Ikram, Eur. Phys. J. C 76, 640 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    P.H.R.S. Moraes, J.D.V. Arbañil, M. Malheiro, J. Cosmol. Astropart. Phys. 06, 005 (2016)

    ADS  Article  Google Scholar 

  23. 23.

    M. Sharif, A. Siddiqa, Eur. Phys. J. Plus 132, 529 (2017)

    Article  Google Scholar 

  24. 24.

    A. Das, Phys. Rev. D 95, 124011 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    M. Sharif, A. Waseem, Gen. Relativ. Gravit. 50, 78 (2018)

    ADS  Article  Google Scholar 

  26. 26.

    D. Deb et al., J. Cosmol. Astropart. Phys. 03, 044 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    M. Sharif, A. Waseem, Eur. Phys. J. C 50, 78 (2018)

    Google Scholar 

  28. 28.

    M. Sharif, A. Siddiqa, Int. J. Mod. Phys. D 27, 1850065 (2018)

    ADS  Article  Google Scholar 

  29. 29.

    M. Sharif, A. Siddiqa, Ad. High Energy Phys. 2019, 8702795 (2019)

    Google Scholar 

  30. 30.

    M. Sharif, A. Waseem, Int. J. Mod. Phys. D 28, 1950033 (2019); 2040005

  31. 31.

    A. Das et al., Phys. Rev. D 95, 124011 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    F. Shamir, M. Ahmad, Phys. Rev. D 97, 104031 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    C. Cattoen, T. Faber, M. Visser, Class. Quantum Grav. 22, 4189 (2005)

    ADS  Article  Google Scholar 

  34. 34.

    A. DeBenedictis et al., Class. Quantum Grav. 23, 2303 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    R. Chan, M.F.A. da Silva, P. Rocha, Gen. Relativ. Gravit. 43, 2223 (2011)

    ADS  Article  Google Scholar 

  36. 36.

    S. Ghosh et al., Res. Phys. 14, 102473 (2019)

    Google Scholar 

  37. 37.

    M. Sharif, A. Waseem, Astrophys. Space Sci. 364, 189 (2019)

    ADS  Article  Google Scholar 

  38. 38.

    S. Ghosh et al., Ann. Phys. 411, 167968 (2019)

    Article  Google Scholar 

  39. 39.

    B. Kuchowicz, Acta. Phys. Pol. 33, 541 (1968)

    Google Scholar 

  40. 40.

    Y.B. Zel’dovich, Mon. Not. R. Astron. Soc. 160, 1 (1972)

    ADS  Article  Google Scholar 

  41. 41.

    B.J. Carr, Astrophys. J. 201, 1 (1975)

    ADS  Article  Google Scholar 

  42. 42.

    P.S. Wesson, J. Math. Phys. 19, 2283 (1978)

    ADS  Article  Google Scholar 

  43. 43.

    M.S. Madsen et al., Phys. Rev. D 46, 1399 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    T.M. Braje, R.W. Romani, Astrophys. J. 580, 1043 (2002)

    ADS  Article  Google Scholar 

  45. 45.

    L.P. Linares, M. Malheiro, S. Ray, Int. J. Mod. Phys. D 13, 1355 (2004)

    ADS  Article  Google Scholar 

  46. 46.

    S. Ghosh, S. Ray, F. Rahaman, B.K. Guha, Ann. Phys. 394, 230 (2018)

    ADS  Article  Google Scholar 

  47. 47.

    G. Darmois, Mémorial des sciences mathématiques XXV, Fasticule XXV (Gauthier-Villars, Paris, 1927)

    Google Scholar 

  48. 48.

    W. Israel, Nuovo Cimento B 44, 1 (1966)

    ADS  Article  Google Scholar 

  49. 49.

    K. Lanczos, Ann. Phys. (Berlin) 379, 518 (1924)

    ADS  Article  Google Scholar 

  50. 50.

    N. Sen, Ann. Phys. (Leipzig) 378, 365 (1924)

    ADS  Article  Google Scholar 

  51. 51.

    H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    D.E. Barraco, V.H. Hamity, Phys. Rev. D 65, 124028 (2002)

    ADS  Article  Google Scholar 

  53. 53.

    Z. Yousaf, K. Bamba, M.Z. Bhatti, U. Ghafoor, Phys. Rev. D 100, 024062 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  54. 54.

    Z. Yousaf, M.Z. Bhatti, H. Asad, Phys. Dark Univ. 28, 100527 (2020)

    Article  Google Scholar 

  55. 55.

    M.Z. Bhatti, Z. Yousaf, A. Rehman, Phys. Dark Univ. 29, 100561 (2020)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Waseem, A. Impact of Kuchowicz metric function on gravastars in f(RT) theory. Eur. Phys. J. Plus 135, 930 (2020). https://doi.org/10.1140/epjp/s13360-020-00957-w

Download citation