Skip to main content
Log in

Derive the Born’s rule from environment-induced stochastic dynamics of wave functions in an open system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The lack of superposition of different position states or the emergence of classicality in macroscopic systems has been a puzzle for decades. Classicality exists in every measuring apparatus and is the key for understanding what can be measured in quantum theory. Different theories have been proposed, including decoherence, einselection and the spontaneous wave-function collapse, with no consensus reached up to now. In this paper, we propose a stochastic dynamics for the wave function in an open system (e.g., the measuring apparatus) that interacts with its environment. The trajectory of wave function is random with a well-defined probability distribution. We show that the stochastic evolution results in the wave-function collapse and the Born’s rule for specific system–environment interactions, while it reproduces the unitary evolution governed by the Schrödinger equation when the interaction vanishes. Our results suggest that it is the way of system interacting with environment that determines whether quantum superposition dominates or classicality emerges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Everett, Rev. Mod. Phys. 29, 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  3. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  Google Scholar 

  4. A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)

    Article  ADS  Google Scholar 

  5. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  6. N. Bohr, Nature (London) 121, 580 (1928)

    Article  ADS  Google Scholar 

  7. A.M. Gleason, J. Math. Mech. 6, 885 (1957)

    MathSciNet  Google Scholar 

  8. H.D. Zeh, Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  9. W.H. Zurek, Phys. Rev. D 24, 1516 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. W.H. Zurek, Phys. Rev. D 26, 1862 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Deutsch, Proc. R. Soc. Lond. A 455, 3129 (1999)

    Article  ADS  Google Scholar 

  12. H. Barnum, C.M. Caves, J. Finkelstein, C.A. Fuchs, R. Schack, Proc. R. Soc. Lond. A 456, 1175 (2000)

    Article  ADS  Google Scholar 

  13. S. Saunders, Proc. R. Soc. Lond. A 460, 1771 (2004)

    Article  ADS  Google Scholar 

  14. D. Wallace, Stud. Hist. Philos. Sci. Part B 34, 415 (2003)

    Article  Google Scholar 

  15. D. Wallace, Stud. Hist. Philos. Sci. Part B 38, 311 (2007)

    Article  Google Scholar 

  16. W.H. Zurek, Phys. Rev. Lett. 90, 120404 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. W.H. Zurek, Phys. Rev. A 71, 052105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Schlosshauer, A. Fine, Found. Phys. 35, 197 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.I.M. Rae, Stud. Hist. Philos. Sci. Part B 40, 243 (2009)

    Article  Google Scholar 

  20. F. Herbut, Eur. Phys. J. Plus 127, 14 (2012)

    Article  Google Scholar 

  21. A.L.G. Mandolesi, Found. Phys. 48, 751 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. A.L.G. Mandolesi, Found. Phys. 49, 24 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. A.L.G. Mandolesi, Phys. Lett. A 384, 126725 (2020)

    Article  MathSciNet  Google Scholar 

  24. G. ’t Hooft, arXiv:1112.1811

  25. M. Genovese, Phys. Rep. 413, 319 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Bohm, Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.D. Towler, N.J. Russell, A. Valentini, Proc. R. Soc. Lond. A 468, 990 (2012)

    ADS  Google Scholar 

  29. A. Khrennikov, J. Phys. A Math. Gen. 38, 9051 (2005)

    Article  ADS  Google Scholar 

  30. G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Bassi, J. Phys. A 38, 3173 (2005)

    Article  MathSciNet  Google Scholar 

  32. P. Pearle, Phys. Rev. A 39, 2277 (1989)

    Article  ADS  Google Scholar 

  33. G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Arndt, K. Hornberger, Nat. Phys. 10, 271 (2014)

    Article  Google Scholar 

  35. A. Pontin, N.P. Bullier, M. Toroš, P.F. Barker, arXiv:1907.06046 (2019)

  36. Z.-Q. Yin, T. Li, X. Zhang, L.M. Duan, Phys. Rev. A 88, 033614 (2013)

    Article  ADS  Google Scholar 

  37. M. Bahrami, M. Paternostro, A. Bassi, H. Ulbricht, Phys. Rev. Lett. 112, 210404 (2014)

    Article  ADS  Google Scholar 

  38. S. Nimmrichter, K. Hornberger, K. Hammerer, Phys. Rev. Lett. 113, 020405 (2014)

    Article  ADS  Google Scholar 

  39. L. Diósi, Phys. Rev. Lett. 114, 050403 (2015)

    Article  ADS  Google Scholar 

  40. D. Goldwater, M. Paternostro, P.F. Barker, Phys. Rev. A 94, 010104 (2016)

    Article  ADS  Google Scholar 

  41. C. Jones, T. Guaita, A. Bassi, arXiv:1907.02370 (2019)

  42. K. Kraus, Found. Phys. 11, 547 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  43. K. Kraus, Found. Phys. 15, 717 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  44. M.A. Braun, K. Urbanowski, Phys. A 190, 130 (1992)

    Article  Google Scholar 

  45. K. Urbanowski, Found. Phys. Lett. 6, 167 (1993)

    Article  MathSciNet  Google Scholar 

  46. T.A. Brun, Am. J. Phys. 70, 719 (2002)

    Article  ADS  Google Scholar 

  47. K. Jacobs, D.A. Steck, Contemp. Phys. 47, 279 (2006)

    Article  ADS  Google Scholar 

  48. A. Patel, P. Kumar, Phys. Rev. A 96, 022108 (2017)

    Article  ADS  Google Scholar 

  49. A.V. Ilyin, Found. Phys. 46, 845 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  50. T.D. Galley, L. Masanes, Quantum 1, 15 (2017)

    Article  Google Scholar 

  51. T.D. Galley, L. Masanes, Quantum 2, 104 (2018)

    Article  Google Scholar 

  52. R. Sorkin, Mod. Phys. Lett. A 9, 3119 (1994)

    Article  ADS  Google Scholar 

  53. U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs, Science 329, 418 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  54. J.Q. Quach, Phys. Rev. A 95, 042129 (2017)

    Article  ADS  Google Scholar 

  55. M.-O. Pleinert, J. von Zanthier, E. Lutz, Phys. Rev. Res. 2, 012051(R) (2020)

    Article  Google Scholar 

  56. M. Zwolak, C.J. Riedel, W.H. Zurek, Sci. Rep. 6, 25277 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC under Grant Nos. 11774315 and 11835011 and the Junior Associates program of the Abdus Salam International Center for Theoretical Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P. Derive the Born’s rule from environment-induced stochastic dynamics of wave functions in an open system. Eur. Phys. J. Plus 135, 927 (2020). https://doi.org/10.1140/epjp/s13360-020-00947-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00947-y

Keywords

Navigation