Skip to main content
Log in

A modified accelerated testing method of ELDRS in extreme-low dose rate irradiation

  • Technical Report
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Low dose rate radiation induced gain degradation in bipolar devices is considered to be the primary threat to the spacecraft reliability and service life. In order to examine the radiation tolerance of bipolar devices, it is recommended to use 10 m rad(Si)/s as the typical dose rate in the standards MIL-STD-883G. There is lack of solid study to prove the dose rate is sufficient enough low. Our latest experiment results showed that the enhanced low dose rate sensitivity (ELDRS) effects was not saturated at 10 m rad(Si)/s. To examine the reliability of bipolar devices in extreme low dose rate environment below 10 m rad(Si)/s in short time, we proposed a modified accelerated testing method of ELDRS effects in extreme-low dose rate irradiation based on elevated temperature irradiation and temperature-switching during irradiation, which is helpful to get quantified results in the whole low dose rate range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.W. Enlow, R.L. Pease, W. Combs et al., Response of advanced bipolar processes to ionizing radiation. IEEE Trans. Nucl. Sci. 38(6), 1342–1351 (1991)

    Article  ADS  Google Scholar 

  2. R.L. Pease, M. Gehlhausen, J. Krieg et al., Evaluation of proposed hardness assurance method for bipolar linear circuits with enhanced low dose rate sensitivity (ELDRS). IEEE Trans. Nucl. Sci. 45(6), 2665–2672 (1998)

    Article  ADS  Google Scholar 

  3. R.L. Pease, D.G. Platteter, G.W. Dunham et al., Characterization of enhanced low dose rate sensitivity (ELDRS) effects using gated lateral PNP transistor structures. IEEE Trans. Nucl. Sci. 51(6), 3773–3780 (2004)

    Article  ADS  Google Scholar 

  4. R.L. Pease, R.D. Schrimpf, D.M. Fleetwood, ELDRS in bipolar linear circuits: a review. In European Conference on Radiation and Its Effects on Components and Systems (IEEE, 2008), pp 18–32

  5. Z. Yu-Zhan, L. Wu, R. Di-Yuan et al., ELDRS and dose-rate dependence of vertical NPN transistor. Chin. Phys. C 33(1), 47 (2009)

    Article  ADS  Google Scholar 

  6. V.S. Pershenkov, D.V. Savchenkov, V.A. Telets, ELDRS in a wide range of total doses. In IOP Conference Series: Materials Science and Engineering, vol. 151, no. 1 (IOP Publishing, 2016), p. 012008

  7. D.M. Fleetwood, S.L. Kosier, R.N. Nowlin et al., Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates. IEEE Trans. Nucl. Sci. 41(6), 1871–1883 (1994)

    Article  ADS  Google Scholar 

  8. J. Boch, F. Saigné, R.D. Schrimpf et al., Effect of switching from high to low dose rate on linear bipolar technology radiation response. IEEE Trans. Nucl. Sci. 51(5), 2896–2902 (2004)

    Article  ADS  Google Scholar 

  9. J. Boch, Y.G. Velo, F. Saigné et al., The use of a dose-rate switching technique to characterize bipolar devices. IEEE Trans. Nucl. Sci. 56(6), 3347–3353 (2009)

    Article  ADS  Google Scholar 

  10. J. Boch, Y.G. Velo, F. Saigné et al., ELDRS: optimization tools for the switched dose rate technique. IEEE Trans. Nucl. Sci. 58(6), 2998–3003 (2011)

    Article  ADS  Google Scholar 

  11. J. Boch, A. Michez, M. Rousselet et al., Dose rate switching technique on ELDRS-free bipolar devices. IEEE Trans. Nucl. Sci. 63(4), 2065–2071 (2016)

    Article  ADS  Google Scholar 

  12. D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides et al., Electron capture, hydrogen release, and enhanced gain degradation in linear bipolar devices. IEEE Trans. Nucl. Sci. 55(6), 2986–2991 (2008)

    Article  ADS  Google Scholar 

  13. R.L. Pease, P.C. Adell, B.G. Rax et al., The effects of hydrogen on the enhanced low dose rate sensitivity (ELDRS) of bipolar linear circuits. IEEE Trans. Nucl. Sci. 55(6), 3169–3173 (2008)

    Article  ADS  Google Scholar 

  14. P.C. Adell, R.L. Pease, H.J. Barnaby et al., Irradiation with molecular hydrogen as an accelerated total dose hardness assurance test method for bipolar linear circuits. IEEE Trans. Nucl. Sci. 56(6), 3326–3333 (2009)

    Article  ADS  Google Scholar 

  15. L.U. Wu, R.E.N. Diyuan, Z. Yuzhan et al., An accelerated simulation method for ELDRS of bipolar operational amplifiers using a dose-rate switching experiment. J. Semicond. 29(7), 1286–1291 (2008)

    Google Scholar 

  16. X. Li, W. Lu, X. Wang et al., Using temperature-switching approach to evaluate the ELDRS of bipolar devices. Radiat. Eff. Defects Solids 172(11–12), 824–834 (2017)

    Article  ADS  Google Scholar 

  17. X.L. Li, W. Lu, X. Wang et al., Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor. Chin. Phys. B 27(3), 036102 (2018)

    Article  ADS  Google Scholar 

  18. X. Li, W. Lu, Q. Guo et al., Temperature-switching during irradiation as a test for ELDRS in linear bipolar devices. IEEE Trans. Nucl. Sci. 66(1), 199–206 (2018)

    Article  ADS  Google Scholar 

  19. D. Chen, J.D. Forney, R.L. Pease, et al, The effects of ELDRS at ultra-low dose rates. In IEEE Radiation Effects Data Workshop, vol. 6 (IEEE, 2010), p. 6

  20. D. Chen, R. Pease, K. Kruckmeyer et al., Enhanced low dose rate sensitivity at ultra-low dose rates. IEEE Trans. Nucl. Sci. 58(6), 2983–2990 (2011)

    Article  ADS  Google Scholar 

  21. A.T. Yastrebov, V.S. Pershenkov, A.S. Bakerenkov, et al, The issue of using test dose rate 10 m rad (Si)/s for ELDRS prediction in MIL-STD-883-H. In 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS) (IEEE, 2015), pp. 1–3

  22. A.H. Johnston, C.I. Lee, B.G. Rax, Enhanced damage in bipolar devices at low dose rates: effects at very low dose rates. IEEE Trans. Nucl. Sci. 43(6), 3049–3059 (1996)

    Article  ADS  Google Scholar 

  23. J. Boch, F. Saign, R.D. Schrimpf et al., Physical model for the low-dose-rate effect in bipolar devices. IEEE Trans. Nucl. Sci. 53(6), 3655–3660 (2006)

    Article  ADS  Google Scholar 

  24. V.S. Pershenkov, D.V. Savchenkov, A.S. Bakerenkov, et al. The conversion model of low dose rate effect in bipolar transistors. In European Conference on Radiation and Its Effects on Components and Systems (IEEE, 2009), pp. 290–297

  25. V.S. Pershenkov, D.V. Savchenkov, A.S. Bakerenkov et al., Conversion model of enhanced low-dose-rate sensitivity for bipolar ICs. Russ. Microlectron. 39(2), 91–99 (2010)

    Article  Google Scholar 

  26. A.S. Bakerenkov, V.V. Belyakov, V.S. Pershenkov et al., Extracting the fitting parameters for the conversion model of enhanced low dose rate sensitivity in bipolar devices. Russ. Microlectron. 42(1), 48–52 (2013)

    Article  Google Scholar 

  27. V.S. Pershenkov, A.S. Bakerenkov, A.V. Solomatin, et al, The estimation of long time operation bipolar devices in space environment using conversion model of ELDRS. Im 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS) (IEEE, 2013), pp. 1–4

  28. V.S. Pershenkov, A.V. Sogoyan, V.A. Telets, Conversion model of radiation-induced interface-trap buildup and the some examples of its application. In IOP Conference Series: Materials Science and Engineering, vol. 151, no. 1 (IOP Publishing, 2016), p. 012001

  29. V.S. Pershenkov, V.A. Telets, A.S. Bakerenkov et al., Effect of elevated temperature irradiation on bipolar devices for space application. Radiat. Eff. Defects Solids 174(3–4), 320–328 (2019)

    Article  ADS  Google Scholar 

  30. P.C. Adell, J. Boch, Dose and dose-rate effects in micro-electronics: pushing the limits to extreme conditions. In IEEE Nuclear and Space Radiation Effects Conference Short Course Notebook, pp. 62–66 (2014)

  31. S. Yao, W. Lu, X. Yu et al., Using a temperature-switching approach to evaluate low-dose-rate ionizing radiation effects on SET in linear bipolar circuits. IEEE Trans. Nucl. Sci. 66(7), 1557–1565 (2019)

    Article  ADS  Google Scholar 

  32. A.S. Bakerenkov, V.S. Pershenkov, V.A. Felitsyn et al., ELDRS susceptibility of bipolar transistors and integrated circuits during low-temperature irradiation. IEEE Trans. Nucl. Sci. 64(8), 2227–2234 (2017)

    Google Scholar 

  33. A.S. Bakerenkov, Experimental equipment for extraction of ELDRS conversion model parameters and its application for estimation of radiation effects in bipolar devices. In 3rd International Conference on Nanotechnologies and Biomedical Engineering (Springer, Singapore, 2016), pp. 520–523

Download references

Acknowledgements

The authors are indebted to the Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences for the radiation experiment and useful discussions.

Funding

This work was supported by the Science Challenge Project (Grant No. TZ2016003-1) and the National Natural Science Foundation of China (Grant Nos. 11804313 and 11404300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Song, Y., Liu, Y. et al. A modified accelerated testing method of ELDRS in extreme-low dose rate irradiation. Eur. Phys. J. Plus 135, 909 (2020). https://doi.org/10.1140/epjp/s13360-020-00938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00938-z

Navigation