Skip to main content
Log in

Ruppeiner geometry of isotropic Blume–Emery–Griffiths model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

With the aid of Ruppeiner thermodynamic metric defined on a two-dimensional phase space of dipolar (m) and quadrupolar (q) order parameters, we derive an expression for the Ricci scalar (R) in the isotropic Blume–Emery–Griffiths model. Temperature dependence of R is investigated for various values of bilinear to biquadratic ratio (r). Its behavior near the continuous/discontinuous phase transition temperatures and a tricritical point is presented. It is found that in addition to the divergence singularity and finite jumps connected with the phase transitions, there are field-dependent broad extrema in the Ricci scalar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Blume et al., Phys. Rev. A 4, 1071 (1971)

    Article  ADS  Google Scholar 

  2. M. Tanaka, I. Mannari, J. Phys. Soc. Jpn. 41, 741 (1976)

    Article  ADS  Google Scholar 

  3. M. Tanaka, K. Takahashi, J. Phys. Soc. Jpn. 43, 1832 (1977)

    Article  ADS  Google Scholar 

  4. O.F.D.A. Bonfim, F.C.S. Barreto, Phys. Lett. A 109, 341 (1985)

    Article  ADS  Google Scholar 

  5. A.F. Siqueira, I.P. Fittipaldi, Phys. Rev. B 31, 6092 (1985)

    Article  ADS  Google Scholar 

  6. C.E.I. Carneiro et al., J. Phys. A: Math. Gen. 20, 189 (1987)

    Article  ADS  Google Scholar 

  7. K.G. Chakraborty, J. Phys. C: Solid State Phys. 21, 2911 (1988)

    Article  ADS  Google Scholar 

  8. J.W. Tucker, J. Phys. C: Solid State Phys. 21, 6215 (1988)

    Article  ADS  Google Scholar 

  9. M. Keskin et al., Phys. A 157, 1000 (1989)

    Article  ADS  Google Scholar 

  10. M. Keskin, Ş. Özgan, Phys. Lett. A 145, 340 (1990)

    Article  ADS  Google Scholar 

  11. M. Keskin, Phys. Scr. 47, 328 (1993)

    Article  ADS  Google Scholar 

  12. M. Keskin, A. Erdinç, Tr. J. Phys. 19, 88 (1995)

    Google Scholar 

  13. O. Vatamaniuk, Y. Rudavskii, Phys. Stat. Sol (b) 197, 199 (1996)

    Article  ADS  Google Scholar 

  14. A. Erdinç, M. Keskin, Phys. A 307, 453 (2002)

    Article  Google Scholar 

  15. E. Albayrak, T. Cengiz, J. Phys. Soc. Jpn. 80, 054004 (2011)

    Article  ADS  Google Scholar 

  16. M. Ertaş, M. Keskin, Phys. A 526, 120933 (2019)

    Article  MathSciNet  Google Scholar 

  17. E. Albayrak, Phys. B 594, 412353 (2020)

    Article  Google Scholar 

  18. R. Erdem, M. Keskin, Phys. Rev. E 64, 026102 (2001)

    Article  ADS  Google Scholar 

  19. M. Keskin, R. Erdem, Phys. Lett. A 297, 427 (2002)

    Article  ADS  Google Scholar 

  20. R. Erdem, M. Keskin, Phys. Lett. A 310, 74 (2003)

    Article  ADS  Google Scholar 

  21. R. Erdem, Phys. Lett. A 312, 238 (2003)

    Article  ADS  Google Scholar 

  22. R. Erdem, S. Özüm, Mod. Phys. Lett. B 33, 1950258 (2019)

    Article  ADS  Google Scholar 

  23. S. Özüm, R. Erdem, Mod. Phys. Lett. B 34, 2050338 (2020)

    Article  Google Scholar 

  24. R. Erdem, J. Phys.: Conf. Ser. 1132, 012028 (2018)

    Google Scholar 

  25. R. Erdem, Acta Phys. Pol. B 49, 1823 (2018)

    Article  ADS  Google Scholar 

  26. R. Erdem, Phys. A 526, 121173 (2019)

    Article  MathSciNet  Google Scholar 

  27. G. Ruppeiner, Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  28. G. Ruppeiner, Rev. Modern Phys. 67, 605 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Mirza, Z. Talaei, Phys. Lett. A 377, 513 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Janyszek, R. Mrugała, Phys. Rev. A 39, 6515 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  31. D.C. Brody, A. Ritz, J. Geom. Phys. 47, 207 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Dey et al., Phys. A 392, 6341 (2013)

    Article  MathSciNet  Google Scholar 

  33. G. Ruppeiner, S. Bellucci, Phys. Rev. E 91, 012116 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Erdem, Phys. A 556, 124837 (2020)

    Article  MathSciNet  Google Scholar 

  35. A. Pawlak et al., J. Magn. Magn. Mater. 395, 1 (2015)

    Article  ADS  Google Scholar 

  36. G. Ruppeiner, Phys. Rev. E 86, 021130 (2012)

    Article  ADS  Google Scholar 

  37. H.-O. May et al., Phys. Rev. E 91, 032141 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Mausbach et al., J. Chem. Phys. 151, 064503 (2019)

    Article  ADS  Google Scholar 

  39. M. Gzik, T. Balcerzak, Acta Phys. Pol. A 92, 543 (1997)

    Article  ADS  Google Scholar 

  40. D.C. Brody, D.W. Hook, J. Phys. A 42, 023001 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. W. Hoston, A.N. Berker, Phys. Rev. Lett. 67, 1027 (1991)

    Article  ADS  Google Scholar 

  42. G. Ruppeiner et al., Phys. Lett. A 379, 646 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. G. Ruppeiner (New College of Florida, USA) for useful discussions related to the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rıza Erdem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, R., Alata, N. Ruppeiner geometry of isotropic Blume–Emery–Griffiths model. Eur. Phys. J. Plus 135, 911 (2020). https://doi.org/10.1140/epjp/s13360-020-00934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00934-3

Navigation