Skip to main content
Log in

Structure formation in generalized Rastall gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently, a modified version of Rastall theory of gravity has been introduced in which a varying coupling parameter could act as dark energy (DE) and thus, it can be held responsible for the current accelerated expansion of the Universe. Motivated by this modification, we study here the evolution of linear and nonlinear perturbations in the matter content of the Universe, utilizing spherically symmetric top-hat collapse scenario. The exact solutions we obtain in linear regime show that as the Universe evolves, matter density perturbations grow and reach a maximum value at a certain redshift after which these perturbations start decreasing toward a finite positive value at the present time. Depending on model parameters, exact oscillatory solutions can be also found representing that matter perturbations could experience either overdense and underdense regions during the dynamical evolution of the Universe. Numerical solutions in nonlinear regime show that the amplitude of perturbations grows much faster than the linear one and diverges at a critical redshift. However, the formation of collapsed structures is delayed as compared to \(\Lambda \)CDM model. It is found that the running mutual interaction between matter and geometry, encoded in the variable Rastall coupling parameter, could drastically affect the dynamics of matter perturbations and their growth rate during the evolution of the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author, [AHZ], upon reasonable request.]

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. P.A. Ade et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 63 (2015)

    Google Scholar 

  4. L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations, 1st edn. (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  5. T. Padmanabhan, Phys. Rept. 380, 235 (2003)

    Article  ADS  Google Scholar 

  6. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  7. V. Faraoni, Cosmology in Scalar-Tensor Gravity (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  8. C. Deffayet, O. Pujolas, I. Sawicki, A. Vikman, JCAP 1010, 026 (2010)

    Article  ADS  Google Scholar 

  9. O. Pujolas, I. Sawicki, A. Vikman, JHEP 1111, 156 (2011)

    Article  ADS  Google Scholar 

  10. A. Silvestri, M. Trodden, Rept. Prog. Phys. 72, 096901 (2009)

    Article  ADS  Google Scholar 

  11. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  12. A. De Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010)

    Article  Google Scholar 

  13. S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  14. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  16. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  17. L. Parker, Phys. Rev. D 3, 346 (1971)

    Article  ADS  Google Scholar 

  18. L. Parker, Phys. Rev. D 3, 2546 (1971)

    Article  ADS  Google Scholar 

  19. L.H. Ford, Phys. Rev. D 35, 2955 (1987)

    Article  ADS  Google Scholar 

  20. P. Rastall, Phys. Rev. D 6, 3357 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Koivisto, Class. Quantum Gravity 23, 4289 (2006)

    Article  ADS  Google Scholar 

  22. O. Minazzoli, Phys. Rev. D 88, 027506 (2013)

    Article  ADS  Google Scholar 

  23. J.C. Fabris, O.F. Piattella, D.C. Rodrigues, M.H. Daouda, A.I.P. Conf, Proc. 50, 1647 (2015)

    Google Scholar 

  24. A.S. Al-Rawaf, M.O. Taha, Phys. Lett. B 366, 69 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. A.S. Al-Rawaf, Int. J. Mod. Phys. D 14, 1941 (2005)

    Article  ADS  Google Scholar 

  26. A.M. Oliveira, H.E.S. Velten, J.C. Fabris, L. Casarini, Phys. Rev. D 92, 044020 (2015)

    Article  ADS  Google Scholar 

  27. P. Xi, Q. Hu, G.-N. Zhuang, X.-Z. Li, Astrophys. Space Sci. 365, 163 (2020)

    Article  ADS  Google Scholar 

  28. S.K. Maurya, F. Tello-Ortiz, Phys. Dark Univ. 29, 100577 (2020)

    Article  Google Scholar 

  29. J.P. Campos, J.C. Fabris, R. Perez, O.F. Piattella, H. Velten, Eur. Phys. J. C 73, 2357 (2013)

    Article  ADS  Google Scholar 

  30. J.C. Fabris, M.H. Daouda, O.F. Piattella, Phys. Lett. B 711, 232 (2012)

    Article  ADS  Google Scholar 

  31. T.R.P. Caramês, M.H. Daouda, J.C. Fabris, A.M. Oliveira, O.F. Piattella, V. Strokov, EPJC 74, 3145 (2014)

    Article  ADS  Google Scholar 

  32. I.G. Salako, M.J.S. Houndjo, A. Jawad, Int. J. Mod. Phys. D 25, 1650076 (2016)

    Article  ADS  Google Scholar 

  33. A.M. Oliveira, H.E.S. Velten, J.C. Fabris, L. Casarini, Phys. Rev. D 92, 044020 (2015)

    Article  ADS  Google Scholar 

  34. O. Akarsu, N. Katirci, S. Kumar, R.C. Nunes, B. Ozturk, S. Sharma. arXiv:2004.04074 [astro-ph.CO]

  35. A.S. Al-Rawaf, M.O. Taha, Gen. Relative. Gravit. 28, 935 (1996)

    Article  ADS  Google Scholar 

  36. V. Majernik, Gen. Rel. Grav. 35, 1007 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. A.I. Arbab, JCAP 05, 008 (2003)

    Article  ADS  Google Scholar 

  38. A. Singh, K.C. Mishra, Eur. Phys. J. Plus 135, 752 (2020)

    Article  Google Scholar 

  39. C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Phys. Rev. D 85, 084008 (2012)

    Article  ADS  Google Scholar 

  40. J.C. Fabris, R. Kerner, J. Tossa, Int. J. Mod. Phys. D 9, 111 (2000)

    Article  ADS  Google Scholar 

  41. S.D.M. White, M.J. Rees, Mon. Not. R. Astron. Soc. 183, 341 (1978)

    Article  ADS  Google Scholar 

  42. P.J.E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, 1993)

    MATH  Google Scholar 

  43. J.A. Peacock, Cosmological Physics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  44. K. Tomita, Prog. Theor. Phys. 42, 9 (1969)

    Article  ADS  Google Scholar 

  45. J.E. Gunn, J.R.I.I.I. Gott, Astrophys. J. 176, 1 (1972)

    Article  ADS  Google Scholar 

  46. O. Lahav, P.B. Lilje, J.R. Primack, M.J. Rees, MNRAS 251, 128 (1991)

    Article  ADS  Google Scholar 

  47. D.F. Mota, C. van de Bruck, Astron. Astrophys. 421, 71 (2004)

    Article  ADS  Google Scholar 

  48. P. Creminelli, G. D’Amico, J. Norena, L. Senatore, F. Vernizzi, JCAP 1003, 027 (2010)

    Article  ADS  Google Scholar 

  49. M.P. Rajvanshi, J.S. Bagla, JCAP 1806, 018 (2018)

    Article  Google Scholar 

  50. S. Basilakos, M. Plionis, J. Sola. Phys. Rev. D 82, 083512 (2010)

    Article  ADS  Google Scholar 

  51. F. Schmidt, M.V. Lima, H. Oyaizu, W. Hu, Phys. Rev. D 79, 083518 (2009)

    Article  ADS  Google Scholar 

  52. A. Borisov, B. Jain, P. Zhang, Phys. Rev. D 85, 063518 (2012)

    Article  ADS  Google Scholar 

  53. M. Kopp, S.A. Appleby, I. Achitouv, J. Weller, Phys. Rev. D 88, 084015 (2013)

    Article  ADS  Google Scholar 

  54. D. Herrera, I. Waga, S.E. Joras, Phys. Rev. D 95, 64029 (2017)

    Article  ADS  Google Scholar 

  55. Ph Brax, R. Rosenfeld, D.A. Steer, JCAP 1008, 033 (2010)

    Article  ADS  Google Scholar 

  56. L.R. Abramo, R.C. Batista, L. Liberato, R. Rosenfeld, JCAP 0711, 012 (2007)

    Article  ADS  Google Scholar 

  57. S. Lee, K. -Wang Ng, JCAP 2010, 028 (2010)

  58. R.C. Batista, V. Marra, JCAP 1711, 048 (2017)

    Article  ADS  Google Scholar 

  59. C.-C. Chang, W. Lee, K. -Wang Ng, Phys. Dark Univ 19, 12 (2018)

  60. S. Sapa, K. Karwan, D.F. Mota, Phys. Rev. D 98, 023528 (2018)

    Article  ADS  Google Scholar 

  61. N. Wintergerst, V. Pettorino, Phys. Rev. D 82, 103516 (2010)

    Article  ADS  Google Scholar 

  62. H. Moradpour, Y. Heydarzade, F. Darabi, Ines G. Salako, Eur. Phys. J. C 77, 259 (2017)

  63. D. Das, S. Dutta, S. Chakraborty, Eur. Phys. J. C 78, 810 (2018)

    Article  ADS  Google Scholar 

  64. M. Roos, Introduction to Cosmology (Wiley, Chichester, 2003)

Download references

Acknowledgements

The authors would like to appreciate the anonymous referee for providing useful comments and suggestions that helped us to improve the original version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Ziaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaie, A.H., Moradpour, H. & Shabani, H. Structure formation in generalized Rastall gravity. Eur. Phys. J. Plus 135, 916 (2020). https://doi.org/10.1140/epjp/s13360-020-00927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00927-2

Navigation