Skip to main content
Log in

MHD natural convection and thermal radiation of diamond–water nanofluid around rotating elliptical baffle inside inclined trapezoidal cavity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 09 February 2021

This article has been updated

Abstract

In this work, we study the natural convection and thermal radiation heat transfer of diamond–water nanofluid around rotating elliptical baffle inside inclined trapezoidal cavity under Lorentz forces effect in the presence of uniform heat generation/absorption. The trapezoidal cavity lateral walls are uniformly cooled, and the top and bottom walls are kept adiabatic. The interior rotating elliptical baffle is uniformly heated. Our numerical study is realized by the software Comsol Multiphysics based on the on the finite element method. The results extracted show that an increment on the convection heat transfer is reached by increasing Rayleigh number, the radiation parameter and the elliptical baffle horizontal radius; however, the increment of Hartmann number reduces it. The effect of cavity inclination on the convection heat transfer depends on the baffle position. The presence of uniform heat generation increases the temperature field inside cavity and improves the convection flow, but the presence of uniform heat absorption reduces it. Using nanoparticles with higher shape factor improves more the convection heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data available on request from the authors.]

Change history

Abbreviations

\( B_{0} \) :

Magnetic field strength (T)

Cp:

Specific heat (J kg K−1)

g :

Gravitational acceleration (\( {\text{m}}\,{\text{s}}^{ - 2} \))

Ha:

Hartmann number, \( B_{0} L\sqrt {\sigma_{\rm f} {/}\rho_{\rm f} \nu_{\rm f} } \)

L :

Length of cavity (m)

m :

Particle shape factor

\( {\text{Nu}}_{\rm l} \) :

Local Nusselt number

\( {\text{Nu}}_{m} \) :

Average Nusselt number

p :

Fluid pressure (N m−2)

p* :

Dimensionless pressure, \( p H^{2} \)/\( \rho_{\rm f} \alpha_{\rm f}^{2} \)

Pr:

Prandtl number, \( \vartheta_{\rm f} \)/\( \alpha_{\rm f} \)

\( Q_{0} \) :

Heat generation or absorption

q*:

Dimensionless heat generation or absorption

R :

Horizontal elliptical baffle radius

r :

Vertical elliptical baffle radius

Ra:

Rayleigh number, g \( \beta_{\rm f} H^{3} \left( {T_{\rm h} - T_{\rm c} } \right) \)/\( \vartheta_{\rm f} \alpha_{\rm f} \)

\( R_{d} \) :

Radiation parameter

T :

Temperature (\( {\text{K}} \))

T* :

Dimensionless temperature, (T − \( T_{\rm c} \))/(\( T_{\rm h} - T_{\rm c} \))

u, v :

Velocity components in x and y directions, (m \( {\text{s}}^{ - 1} \))

u*, v*:

Dimensionless velocity components

x, y :

Cartesian coordinates (m)

x*, y*:

Dimensionless coordinates

\( \alpha \) :

Thermal diffusivity (\( {\text{m}}^{2} \,{\text{s}}^{ - 1} \))

σ:

Electrical conductivity (\( {\text{Am}}\,{\text{V}}^{ - 1} \))

\( \varphi \) :

Solid volume fraction of nanoparticles

ρ :

Local density (kg m−3)

ν :

Cinematic viscosity (m2 s1)

\( \Delta T \) :

Temperature difference, \( T_{\rm h} - T_{c } , \left( {\text{K}} \right) \)

μ :

Dynamic viscosity, \( {\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} \)

β :

Thermal expansion coefficient \( \left( {{\text{k}}^{ - 1} } \right) \)

\( \omega \) :

Elliptical baffle position (°)

\( \gamma \) :

Angle of inclination of cavity (°)

c:

Cold wall

nf:

Nanofluid

f:

Fluid

h:

Hot wall

p:

Nanoparticle

References

  1. M.B. Ben Hamida, K. Charrada, Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp. Am. Inst. Phys. Plasmas 19, 063504 (2012)

    ADS  Google Scholar 

  2. Z. Araoud, R. Ben Ahmed, M.B. Ben Hamida, St Franke, M. Stambouli, K. Charrada, G. Zissis, A two-dimensional modeling of the warm-up phase of a high-pressure mercury discharge. Phys. Plasmas 17, 1120–1134 (2010)

    Google Scholar 

  3. M.B. Ben Hamida, K. Charrada, Contrasting the effect of electric current between the vertical and horizontal mercury discharge. IEEE Trans. Plasma Sci. 41, 7 (2013)

    Google Scholar 

  4. M.B. Ben Hamida, K. Charrada, Contrast the effect of the mass of mercury between the vertical and horizontal mercury discharge lamps. IEEE Trans. Plasma Sci. 40, 2065 (2012)

    ADS  Google Scholar 

  5. M.B. Ben Hamida, K. Charrada, A three-dimensional thermal study of a mercury discharge lamp with double envelope for different orientations. J. Phys. Plasmas 81, 9058102i02 (2014)

    Google Scholar 

  6. P. Stevanovi, D. Cvetinovi, G. Zivkovi, S. Oka, P. Pavlovi, Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor. Therm Sci. 7, 63–99 (2003)

    Google Scholar 

  7. M.B. Ben Hamida, K. Charrada, Three-dimensional numerical study of different parameters effect on the external magnetic field applied to center the arc of the horizontal mercury discharge lamp. AIP Adv. Am. Inst. Phys. 5, 107212 (2015)

    ADS  Google Scholar 

  8. M.B. Ben Hamida, K. Charrada, Three-dimensional dynamic study of a metal halide thallium iodine discharge plasma powered by a sinusoidal and square signal. Euro Phys. J. D 70, 7 (2016)

    ADS  Google Scholar 

  9. B. Ferjani, M.B. Ben Hamida, A three-dimensional thermal study of a mercury discharge lamp with double envelope for different orientations, Euro Phys. J. D 73 (2019)

  10. M.B. Ben Hamida, H. Helali, Z. Araoud, K. Charrada, Contrast between the vertical and horizontal mercury discharge lamps. Am. Inst. Phys. Plasmas 18, 063506 (2011)

    ADS  Google Scholar 

  11. M.B. Ben Hamida, S. Hadj Salah, K. Charrada, Total pressure and atomic ratio on transport coefficients of HgTlI discharge plasma using a LTE chemical model. Euro Phys. J. D 69, 1–10 (2015)

    Google Scholar 

  12. X. Liu, L. He, Y. Chen, J. Lei, J. Deng, Emission characteristics of aviation kerosene combustion in aero-engine annular combustor with low temperature plasma assistance. Therm. Sci. 23, 647–660 (2019)

    Google Scholar 

  13. O. Mahian, A. Kianifar, A.Z. Sahin, S. Wongwises, Performance analysis of a minichannel-based solar collector using different nanofluids. Energy Convers. Manag. 88, 129–138 (2014)

    Google Scholar 

  14. S. Rashidi, O. Mahian, E.M. Languri, Applications of nanofluids in condensing and evaporating systems. J. Therm. Anal. Calor. 131, 3 (2018)

    Google Scholar 

  15. M.B. Ben Hamida, J. Belghaeib, N. Hajji, Numerical study of heat and mass transfer enhancement for bubble absorption process of ammonia water mixture without and with nanofluid. Therm. Sci. 22, 3107–3120 (2018)

    Google Scholar 

  16. M.B. Ben Hamida, J. Belghaeib, N. Hajji, Heat and mass transfer enhancement for falling film absorption process in vertical plate absorber by adding copper nanoparticles. Arab. J. Sci. Eng. 43, 4991–5001 (2018)

    Google Scholar 

  17. R. Ben Jaballah, M.B. Ben Hamida, J. Saleh, M.A. Almeshaal, Enhancement of the performance of bubble absorber using hybrid nanofluid as a cooled absorption system. Int. J. Numer. Methods Heat Fluid Flow 29, 3857–3871 (2019)

    Google Scholar 

  18. R. Jaballah, M.B. Hamida, M.A. Almeshaal, A.J. Chamkha, The influence of hybrid nanofluid and coolant flow direction on bubble mode absorption improvement. Math Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6605

    Article  Google Scholar 

  19. S. Salah, M.B. Ben Hamida, Heat transfer enhancement of circular and square LED geometry. Int. J. Numer. Methods Heat Fluid Flow 29, 5 (2018)

    Google Scholar 

  20. S. Ben Salah, M.B. Ben Hamida, Alternate PCM with air cavities in LED heat sink for transient thermal management. Int. J. Numer. Methods Heat Fluid Flow 29, 11 (2019)

    Google Scholar 

  21. A.M. Hussein, G. Bhaskaran, N.H. Shuaib, R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew. Sustain. Energy Rev. 15, 1502–1512 (2011)

    Google Scholar 

  22. H.M. Sadeghi, M. Babayan, A.J. Chamkha, Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition. Int. J. Heat Mass Transf. 147, 118970 (2020)

    Google Scholar 

  23. A.M. Hussein, P. Gunnasegaran, N.H. Shuaib, Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. Int. Commun. Heat Mass Transf. 38, 63–68 (2011)

    Google Scholar 

  24. M.B. Ben Hamida, M.D. Massoudi, R. Marzouki, L. Kolsi, M.A. Almeshaal, A.K. Hussein, Study of heat and mass transfer control inside channel partially filled with a porous medium using nanofluid. Therm. Sci. 11, 460 (2019)

    Google Scholar 

  25. M. Ghalambaz, S.A.M. Mehryan, I. Zahmatkesh, A.J. Chamkha, Free convection heat transfer analysis of a suspension of nano-encapsulated phase change materials (NEPCMs) in an inclined porous cavity. Int. J. Therm. Sci. 157, 106503 (2020)

    Google Scholar 

  26. S.A.M. Mehryan, K.A. Ayoubloo, M. Shahabadi, M. Ghalambaz, P. Talebizadehsardari, A.J. Chamkha, Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: a deformed mesh approach. Transp. Porous Med. 132, 657–681 (2020)

    MathSciNet  Google Scholar 

  27. M.D. Massoudi, M.B. Ben Hamida, A.M. Hussein, M.A. Almeshaal, MHD heat transfer in W-shaped inclined cavity containing a porous medium saturated with Ag/Al2O3 hybrid nanofluid in the presence of uniform heat generation/absorption. Energies 13, 3457 (2020)

    Google Scholar 

  28. Y. Ma, R. Mohebbi, M.M. Rashidi, Z. Yang, M.A. Sheremet, Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Transf. 130, 123–134 (2019)

    Google Scholar 

  29. A. Abedini, T. Armaghani, A.J. Chamkha, MHD free convection heat transfer of a water–Fe3O4 nanofluid in a baffled C-shaped enclosure. J. Therm. Anal. Calorim. 135, 685–695 (2019)

    Google Scholar 

  30. S.F. Hosseinizadeh, E. Sourtiji, Heat transfer augmentation of magnetohydrodynamics natural convection in L-shaped cavities utilizing nanofluids. Therm. Sci. 16, 489–501 (2012)

    Google Scholar 

  31. A. Yadollahi, A. Khalesidoost, A. Kasaeipoor, M. Hatami, D. Jing, Physical investigation on silver-water nanofluid natural convection for an F-shaped cavity under the magnetic field effects. Eur. Phys. J. Plus 132, 372 (2017)

    Google Scholar 

  32. M.H. Tilehnoee, A.S. Dogonchi, S.M. Seyyedi, A.J. Chamkha, D.D. Ganji, Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. J. Therm. Anal. Calorim. 141, 2033–2045 (2020)

    Google Scholar 

  33. A.K. Hussein, M.A.Y. Bakier, M.B. Ben Hamida, S. Sivasankaran, Magneto-hydrodynamic natural convection in an inclined T-shaped enclosure for different nanofluids and subjected to a uniform heat. Alex. Eng. J. 55, 2157–2169 (2016)

    Google Scholar 

  34. A.J. Chamkha, A.M. Rashad, A.I. Alsabery, Z.M.A. Abdelrahman, H.A. Nabwey, Impact of partial slip on magneto-ferrofluids mixed convection flow in enclosure. J. Therm. Sci. Eng. Appl. 12, 051002 (2020)

    Google Scholar 

  35. M. Ghalambaz, A. Doostani, E. Izadpanahi, A.J. Chamkha, Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J. Therm. Anal. Calorim. 139, 2321–2336 (2020)

    Google Scholar 

  36. S.A.M. Mehryan, M. Ghalambaz, A.J. Chamkha, M. Izadi, Numerical study on natural convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure: a local thermal non-equilibrium model. Powder Technol. 367, 443–455 (2020)

    Google Scholar 

  37. A.I. Alsabery, T. Tayebi, H.T. Kadhim, M. Ghalambaz, I. Hashim, A.J. Chamkha, Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block. J. Adv. Res. (2020). https://doi.org/10.1016/j.jare.2020.09.008

    Article  Google Scholar 

  38. A.J. Chamkha, A.S. Dogonchi, D.D. Ganji, Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 9, 025103 (2019)

    ADS  Google Scholar 

  39. K.M. Shirvan, S. Mirzakhanlari, H.F. Öztop, M. Mamourian, K. Al-Salem, MHD heat transfer and entropy generation in inclined trapezoidal cavity filled with nanofluid: numerical investigation and sensitivity analysis. Int. J. Numer. Methods Heat Fluid Flow 27, 2174–2202 (2017)

    Google Scholar 

  40. M.S. Hossain, M.A. Alim, MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall. Int. J. Heat Mass Transf. 69, 327–336 (2014)

    Google Scholar 

  41. M.A. Teamah, A.I. Shehata, Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities. Alex. Eng. J. 55, 1037–1046 (2016)

    Google Scholar 

  42. M.A. Teamah, W.M. El-Maghlany, Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int. J. Therm. Sci. 58, 130–142 (2012)

    Google Scholar 

  43. B. Mliki, M.A. Abbassi, A. Omri, Z. Belkace, Augmentation of natural convective heat transfer in linearly heated cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Powder Technol. 284, 312–325 (2015)

    Google Scholar 

  44. A.A. Alnaqi, S. Aghakhani, A.H. Pordanjani, R. Bakhtiari, A. Asadi, M.-D. Tran, Effects of magnetic field on the convective HTR and entropy generation of a nanofluid in an inclined square cavity equipped with a conductor fin: considering the radiation effect. Int. J. Heat Mass Transf. 133, 256–267 (2019)

    Google Scholar 

  45. F. Selimefendigil, Natural convection in a trapezoidal cavity with an inner conductive object of different shapes and filled with nanofluids of different nanoparticle shapes. Iran. J. Sci. Technol. 42, 169–184 (2018)

    Google Scholar 

  46. F.A. Soomro, R.U. Haq, Z. Hammouch, Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle. Int. J. Heat Mass Transf. 118, 773–784 (2018)

    Google Scholar 

  47. R.U. Haq, F.A. Soomro, H.F. Öztop, T. Mekkaoui, Thermal management of water-based carbon nanotubes enclosed in a partially heated triangular cavity with heated cylindrical obstacle. Int. J. Heat Mass Transf. 131, 724–736 (2019)

    Google Scholar 

  48. L. Zhixiong, A.K. Hussein, O. Younis, M. Afrand, S. Feng, Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects. Int. Commun. Heat Mass Transf. 116, 104650 (2020)

    Google Scholar 

  49. M.D. Massoudi, M.B. Ben Hamida, M.A. Almeshaal, Free convection and thermal radiation of nanofluid inside nonagon inclined cavity containing a porous medium influenced by magnetic field with variable direction in the presence of uniform heat generation/absorption. Int. J. Numer. Methods Heat Fluid Flow (2020). https://doi.org/10.1108/hff-04-2020-0223

    Article  Google Scholar 

  50. M. Bilal, M. Sagheer, S. Hussain, Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity. Alex. Eng. J. 57, 4 (2018)

    Google Scholar 

  51. A. Yücel, S. Acharya, M. Williams, Natural convection and radiation in a square enclosure. Numer. Heat Transf. 15, 261–278 (1989)

    Google Scholar 

  52. M.R. Safaei, A. Karimipour, A. Abdollahi, T.K. Nguyen, The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Phys. A 509, 515–535 (2018)

    Google Scholar 

  53. L. Zhixiong, A.K. Hussein, O. Younis, S. Rostami, W. He, Effect of alumina nano-powder on the natural convection of water under the influence of a magnetic field in a cavity and optimization using RMS: using empirical correlations for the thermal conductivity and a sensitivity analysis. Int. Commun. Heat Mass Transf. 112, 104497 (2020)

    Google Scholar 

  54. M. Molana, A.S. Dogonchi, T. Armaghani, A.J. Chamkha, D.D. Ganji, I. Tlili, Investigation of hydrothermal behavior of Fe3O4-H2O nanofluid natural convection in a novel shape of porous cavity subjected to magnetic field dependent (MFD) viscosity. J. Energy Storage 30, 101395 (2020)

    Google Scholar 

  55. M.S. Sadeghi, T. Tayebi, A.S. Dogonchi, T. Armaghani, P. Talebizadehsardari, Analysis of hydrothermal characteristics of magnetic Al2O3-H2O nanofluid within a novel wavy enclosure during natural convection process considering internal heat generation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6520

    Article  Google Scholar 

  56. A. Raisi, S. Rostami, A.A. Nadooshan, M. Afrand, The examination of circular and elliptical vanes under natural convection of nanofluid in a square chamber subject to radiation effects. Int. Commun. Heat Mass Transf. 117, 104770 (2020)

    Google Scholar 

  57. M.B. Ben Hamida, K. Charrada, Natural convection heat transfer in an enclosure filled with an ethylene glycol-copper nanofluid under magnetic fields. Numer. Heat Transf. Part A 67, 902–920 (2014)

    ADS  Google Scholar 

  58. H.C. Brinkman, The Viscosity of concentrated suspensions and solution. J. Chem. Phys. 20, 571–581 (1952)

    ADS  Google Scholar 

  59. A.S. Dogonchi, A. Mikhail, I. Sheremet, D. Pop, D. Ganji, MHD natural convection of Cu/H2O nanofluid in a horizontal semi-cylinder with a local triangular heater. Int. J. Numer. Methods Heat Fluid Flow 28, 2979–2996 (2018)

    Google Scholar 

  60. A.S. Dogonchi, M.K. Nayak, N. Karimi, A.J. Chamkha, D.D. Ganji, Numerical simulation of hydrothermal features of Cu-H2O nanofluid natural convection within a porous annulus considering diverse configurations of heater. J. Therm. Anal. Calorim. 141, 2109–2125 (2020)

    Google Scholar 

  61. A.A.A. Arani, F. Monfaredi, A. Aghaei, M. Afrand, A.J. Chamkha, H. Emami, Thermal radiation effect on the flow field and heat transfer of Co3O4-diamond/EG hybrid nanofluid using experimental data: a numerical study. Eur. Phys. J. Plus 134, 13 (2019)

    Google Scholar 

  62. T. Javed, Z. Mehmood, I. Pop, MHD mixed convection flow in a lid driven trapezoidal cavity under uniformly/non-uniformly heated bottom wall. Int. J. Numer. Methods Heat Fluid Flow 27, 1231–1248 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bechir Ben Hamida.

Additional information

The original online version of this article was revised: In the original publication of the article, unfortunately the author Mohamed Bechir Ben Hamida has been linked to affiliation 3 by mistake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoudi, M.D., Ben Hamida, M.B. MHD natural convection and thermal radiation of diamond–water nanofluid around rotating elliptical baffle inside inclined trapezoidal cavity. Eur. Phys. J. Plus 135, 902 (2020). https://doi.org/10.1140/epjp/s13360-020-00921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00921-8

Navigation