Skip to main content
Log in

Experimental investigation of WEDM on titanium hybrid composite reinforced with boron powder: a novel approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This manuscript presents an experimental investigation based on a novel optimization algorithm known as desirable grey relational analysis (DGRA) where desirability function is coupled with grey relational analysis for multi-objective optimization. The experimental and predicted results are compared with multi-criteria decision making method like fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) coupled with fuzzy analytical hierarchy process for criteria weights. Experimental analysis is done on wire electro-discharge machining of a developed novel titanium hybrid composite fabricated by laser engineering net shaping process varying power, time off and peak current as main input process parameters. Response surface methodology is used on Box-Behnken design model (3-factors/3-levels) having output responses like material removal rate, surface roughness, kerf width and over cut. Satisfactory outcomes are obtained and authenticated by confirmatory test. To check and confirm that models are significant, analysis of variance is used. Optimal solution is obtained by desirability approach to achieve the best output response which is further improved by 1.75%, 0.73% and 1.02% when compared with desirability to FTOPSIS, FTOPSIS to DGRA, and desirability to DGRA respectively

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. L. Gu, L. Li, W. Zhao, K.P. Rajurkar, Electrical discharge machining of Ti6Al4 V with a bundled electrode. Int. J. Mach. Tool Manu. 53, 100–106 (2012)

    Article  Google Scholar 

  2. C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical applications of titanium and its alloys. Bio Mater Sci. 60, 46–49 (2008)

    Google Scholar 

  3. A. Kumar, V. Kumar, J. Kumar, Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. Int. J. Adv. Manuf. Technol. 68, 2645–2668 (2013)

    Article  Google Scholar 

  4. V.S. Saji, Y.H. Jeong, J.W. Yu, H.C. Choe, Corrosion behavior of Ti-13Nb-13Zr and Ti-6Al-4 V alloys for biomaterial application. Corros. Sci. Technol. 9, 12–15 (2010)

    Google Scholar 

  5. C. Fleck, D. Eifler, Corrosion, fatigue and corrosion fatigue behavior of metal implant materials especially titanium alloys. Int. J. Fatigue 32, 929–935 (2010)

    Article  Google Scholar 

  6. H.Z. Niu, S.L. Xiao, F.T. Kong, C.J. Zhang, Y.Y. Chen, Microstructure characterization and mechanical properties of TiB2/TiAl in situ composite by induction skull melting process. Mater. Sci. Eng., A 532, 522–527 (2012)

    Google Scholar 

  7. H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, M.S. Dargusch, Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Mater. Sci. Eng., A 705, 385–393 (2017)

    Article  Google Scholar 

  8. X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Microstructures of laser-deposited Ti–6Al–4 V. Mater. Des. 25, 137–144 (2004)

    Article  Google Scholar 

  9. G.J. Marshall, W.J. Young, S.M. Thompson, N. Shamsaei, S.R. Daniewicz, S. Shao, Understanding the microstructure formation of Ti-6Al-4 V during direct laser deposition via in situ thermal monitoring. J. Occup. Med. 68, 778–790 (2016)

    Google Scholar 

  10. A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 6, 1640–1648 (2010)

    Article  Google Scholar 

  11. C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, M.M. Attallah, Fabrication of large Ti–6Al–4V structures by direct laser deposition. J. Alloy. Comp. 629, 351–361 (2015)

    Article  Google Scholar 

  12. A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, D.W. Seely, Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V. Mater. Sci. Eng., A 655, 100–112 (2016)

    Article  Google Scholar 

  13. Y. Hu, F. Ning, H. Wang, W. Cong, B. Zhao, Laser engineered net shaping of quasi continuous network microstructural TiB reinforced titanium matrix bulk composites: microstructure and wear performance. Optics Laser. Technol. 99, 174–183 (2018)

    Article  ADS  Google Scholar 

  14. Y. Hu, W. Cong, X. Wang, Y. Li, F. Ning, H. Wang, Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening. Compos. B Eng. 133, 91–100 (2018)

    Article  Google Scholar 

  15. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Scudino, C. Yang, J. Eckert, Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J. Mater. Res. 29, 1941–1950 (2014)

    Article  ADS  Google Scholar 

  16. M. Manjaiah, S. Narendranath, S. Basavarajappa, A review on machining of titanium based alloys using EDM and WEDM. Rev. Adv. Mater. Sci. 36, 89–111 (2014)

    Google Scholar 

  17. F. Nourbakhsh, K.P. Rajurkar, A.P. Malshe, J. Cao, Wire electro-discharge machining of titanium alloy. Procedia CIRP 5, 13–18 (2013)

    Article  Google Scholar 

  18. S.F. Hsieh, S.L. Chen, H.C. Lin, M.H. Lin, S.Y. Chiou, The machining characteristics and shape recovery ability of Ti–Ni–X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining. Int J Mach Tool Manu. 49, 509–514 (2009)

    Article  Google Scholar 

  19. S. Kuriakose, M.S. Shunmugam, Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting algorithm. J. Mater. Process. Technol. 170, 133–141 (2005)

    Article  Google Scholar 

  20. F. Han, J. Jiang, D. Yu, Influence of machining parameters on surface roughness in finish cut of WEDM. Int. J. Adv. Manuf. Technol. 34, 538–546 (2007)

    Google Scholar 

  21. A. Sharma, M.P. Garg, K.K. Goyal, Prediction of Optimal Conditions for WEDM of Al 6063/ZrSiO4(p) MMC. Procedia Mater. Sci. 6, 1024–1033 (2014)

    Google Scholar 

  22. S. Bose, S. Samanta, N. Mandal, S. De, N.S. Mistry, P. Koley, T. Nandi, A novel approach in comparison and experimentation of Hybrid Metal Matrix Composites using advanced MCDM methods. IOP Conf. Series: Mat. Sci. Eng. 653, 012003 (2019)

    Google Scholar 

  23. S. Bose, N. Mandal, T. Nandi, Selection and Experimentation of the Best Hybrid Green Composite Using Advanced MCDM methods for clean sustainable energy recovery: a novel approach. Int. J. Math. Eng. Management Sci. 5, 556–566 (2020)

    Google Scholar 

  24. E. Ekici, A.R. Motorcu, A. Kuş, Evaluation of surface roughness and material removal rate in the wire electrical discharge machining of Al/B4C composites via the Taguchi method. J. Compos. Mater. 50, 2575–2586 (2015)

    Google Scholar 

  25. D. Kumar, S. Gururaja, Abrasive waterjet machining of Ti/CFRP/Ti laminate and multi-objective optimization of the process parameters using response surface methodology. J. Compos. Mater. 54, 1741–1759 (2019)

    Article  Google Scholar 

  26. S. Rajesh, S. Rajakarunakaran, R. Sudhkarapandian, Optimization of the red mud–aluminum composite in the turning process by the Grey relational analysis with entropy. J. Compos. Mater. 48, 2097–2105 (2013)

    Article  Google Scholar 

  27. R.A. Ramnath, P.R. Thyla, N.M. Kumar, S. Aravind, Optimization of machining parameters of composites using multi-attribute decision-making techniques: a review. J. Reinf. Plast. Compos. 37, 77–89 (2017)

    Article  Google Scholar 

  28. A. Khazaei, A. Shojaei, Modeling and optimization of friction materials based on genetic programming and experimental frictional data. J. Reinf. Plast. Compos. 34, 581–590 (2015)

    Article  Google Scholar 

  29. P.E. Jahromi, A. Shojaei, S.M.R. Pishvaie, Prediction and optimization of cure cycle of thick fiber-reinforced composite parts using dynamic artificial neural networks. J. Reinf. Plast. Compos. 31, 1201–1215 (2012)

    Article  ADS  Google Scholar 

  30. A.V. Shayan, R.A. Afza, R. Teimouri, Parametric study along with selection of optimal solutions in dry wire cut machining of cemented tungsten carbide (WC-Co). J. Manuf. 15, 644–658 (2013)

    Article  Google Scholar 

  31. S.S. Kumar, M. Uthayakumar, S.T. Kumaran, P. Parameswaran, E. Mohandas, G. Kempulraj, B.S. Ramesh Babu, S.A. Natarajan, Parametric optimization of wire electrical discharge machining on aluminium based composites through grey relational analysis. J. Manuf. 20, 33–39 (2015)

    Article  Google Scholar 

  32. V. Kavimani, K. Soorya Prakash, T. Thankachan, Multi-objective optimization in WEDM process of graphene–SiC-magnesium composite through hybrid techniques. Measurement 145, 335–349 (2019)

    Article  Google Scholar 

  33. C.L. Hwang, K. Yoon, Multiple Attribute Decision Making Methods and Applications (Springer, Berlin, 1981)

    Book  Google Scholar 

  34. R. Biswas, M.C. Das, S. Bhattacharyya, A.S. Kuar, S. Mitra, Selection of Nd:yAG laser beam micro-drilling parameters using multi-criteria decision making methods. Opt. Laser Technol. 119, 105596 (2019)

    Article  Google Scholar 

  35. L.A. Zadeh, Fuzzy sets. Information. Control 8, 338–353 (1965)

    Article  MathSciNet  Google Scholar 

  36. K. Ananthakumar, D. Rajamani, E. Balasubramanian, J. Paulo Davim, Measurement and optimization of multi-response characteristics in plasma arc cutting of Monel 400™ using RSM and TOPSIS. Measurement 135, 725–737 (2019)

    Article  Google Scholar 

  37. S. Nădăban, S. Dzitac, I. Dzitac, Fuzzy TOPSIS: a general view. Procedia Comput. Sci. 91, 823–831 (2016)

    Article  Google Scholar 

  38. T.K. Biswas, S.M. Akash, S. Saha, A fuzzy-AHP method for selection best apparel item to start-up with new garment factory: a case study in Bangladesh. Int. J. Res. Ind. Eng. 7, 32–50 (2018)

    Google Scholar 

  39. F. Liu, Y. Peng, W. Zhang, W. Pedrycz, On consistency in AHP and fuzzy AHP. Int. J. Syst. Sci. 5, 128–147 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soutrik Bose.

Ethics declarations

Conflict of interest

The authors declare and confirm that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Nandi, T. Experimental investigation of WEDM on titanium hybrid composite reinforced with boron powder: a novel approach. Eur. Phys. J. Plus 135, 914 (2020). https://doi.org/10.1140/epjp/s13360-020-00904-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00904-9

Navigation