Skip to main content
Log in

Effect of spin–orbit coupling on opto-electronic and magnetic properties of rare-earth terbium dioxide (TbO2): first principle calculations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A density functional theory calculation via first principle approach of electronic and magnetic properties of f-electron systems is a matter of pronounced challenge in the materials research due to the struggle in simultaneous stability to delight both the localized and itinerant states. In f-electron systems, f-states show a significant part in defining their chemical and physical properties. In the present investigations, spin-polarized electronic and magnetic calculations have been done for TbO2. We have employed the PBE-GGA and Tb-mBJ exchange correlation functional for the calculation along with the spin–orbit coupling effect. The band gap of TbO2 ~ 5.8 eV for spin up states with a magnetic moment of ~ 7.0 μB per unit cell was estimated using the PBE-GGA exchange correlation which is in well agreement with previous theoretical studies. The maximum absorption and optical conductivity lies within the visible and UV region with refractive index ~ 3.5 at zero photon energy. These properties of TbO2 show the ferromagnetic semiconductor character. We have also observed the effect of spin–orbit coupling (SOC) on opto-electronic properties of the compound. Density of states and band structure shows the splitting of the f-states of Tb atoms on inclusion of SOC. The overall electronic, magnetic and optical properties of TbO2 are suitable for its use in solid state and opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

References

  1. K. A. Gschneidner, L. Eyring (eds.) Handbook on the Physics and Chemistry of Rare Earths (North-Holland, Amsterdam, 1978-2010), vol. 1–40

  2. C.I. Hancox, S.C. Doret, Nature (London) 431, 281 (2004)

    Article  ADS  Google Scholar 

  3. A. Rosenflanz, M. Frey, B. Endres, Nature (London) 430, 761 (2004)

    Article  ADS  Google Scholar 

  4. Z.L. Fu, S.H. Zhou, S.Y. Zhang, J. Phys. Chem. B 109, 14396 (2005)

    Article  Google Scholar 

  5. K.M. Wong, Results Phys. 7, 1308 (2017)

    Article  ADS  Google Scholar 

  6. A.M. dos Santos, F.M.B. Marques, L.D. Carlos, J. Mater. Chem. 16, 3139 (2006)

    Article  Google Scholar 

  7. S.Y. Savrasov, G. Kotliar, E. Abrahams, Nature 410, 793 (2001)

    Article  ADS  Google Scholar 

  8. D.M. Gruen, W.C. Koehler, J.J. Katz, J. Am. Chem. Soc. 73, 1475 (1951)

    Article  Google Scholar 

  9. J. Zhang, R.B. Von Dreele, L. Eyring, J. Solid State Chem. 104, 21 (1993)

    Article  ADS  Google Scholar 

  10. F. Ahmadpour, Y. Mozharivskyj, J. Alloys Compd. 452, 254 (2008)

    Article  Google Scholar 

  11. S.V. Belaya et al., Chem. Vap. Depo. 21, 150 (2015)

    Article  Google Scholar 

  12. H.A. Miran et al., Mater. Res. Express 5, 085901 (2018)

    Article  ADS  Google Scholar 

  13. S. Bernal et al., Chem. Commun. M1997, 1545 (1997)

    Article  Google Scholar 

  14. S. Bernal et al., Catal. Today 53, 607 (1999)

    Article  Google Scholar 

  15. M.B. Kanoun, A.H. Reshak, N.K. Bouayed, S. Goumri-Said, J. Magn. Maters 324, 1397 (2012)

    Article  ADS  Google Scholar 

  16. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 244, 30 (1944)

    Google Scholar 

  17. W. Kohn, L. Sham, Phys. Rev. A 140, 113 (1965). https://doi.org/10.1103/Physrev.140.A1133

    Article  Google Scholar 

  18. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal Properties (Vienna University Of Technology, Austria, 2001)

    Google Scholar 

  19. D.J. Singh, Phys. Rev. B 82, 205102 (2010)

    Article  ADS  Google Scholar 

  20. S. Kumar, N. Kumar, K. Yadav, A. Kumar, R.P. Singh, Optik Int. J. Light Elecctron. Opt. 207, 163797 (2020)

    Article  Google Scholar 

  21. C.I. Silva Filho, A.L. Oliveira, S.C.F. Pereira, G.F. de Sá, L.L. da Luz, S. Alves Júnior, Dalton Trans. 48, 2574–2581 (2019)

    Article  Google Scholar 

  22. J. Osuwa, C. Oriaku, C. Atuloma, Chalcogenide Lett. 7, 383 (2010)

    Google Scholar 

  23. J. Osuwa, C. Oriaku, O. Uko, Chalcogenide Lett. 7, 449 (2010)

    Google Scholar 

  24. D.R. Penn, Phys. Rev. 128, 2093 (1962)

    Article  ADS  Google Scholar 

  25. O. Pulci, M. Palummo, V. Olevano, G. Onida, L. Reining, R.D. Sole, Phys. Stat. Sol. 188, 1261 (2001)

    Article  ADS  Google Scholar 

  26. S. Berrah, A. Boukortt, H. Abid, Physica E Low. Syst. Nanostruct. 41, 701 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, Arvind Kumar also wants to acknowledge the financial support received from the UGC in form of UGC-BSR Research Start-up Grant (F.30-374/2017(BSR)), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

AK, MK: writing-original draft, formal analysis; RPS: review and formal analysis.

Corresponding authors

Correspondence to Arvind Kumar or Manish Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, M. & Singh, R.P. Effect of spin–orbit coupling on opto-electronic and magnetic properties of rare-earth terbium dioxide (TbO2): first principle calculations. Eur. Phys. J. Plus 135, 939 (2020). https://doi.org/10.1140/epjp/s13360-020-00901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00901-y

Navigation