Skip to main content
Log in

Computational techniques for highly oscillatory and chaotic wave problems with fractional-order operator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamic evolution of chaotic and oscillatory waves arising from dissipative dynamical systems of elliptic and parabolic types of partial differential equations. In such a system, the classical second-order partial derivatives are modeled with the Riesz fractional-order operator in one and two dimensions. We employ both finite difference schemes and the Fourier spectral methods for the approximation of fractional derivatives. We examined the accuracy of the schemes by reporting their convergence results. These numerical techniques are applied to solve two practical problems that are of current and recurring interests, namely the fractional multi-wing chaotic system and fractional Helmholtz equation in one and two spatial dimensions. In the computational experiments, it was observed that under certain conditions, nonlinear dynamical system which depends on some variables is able to produce the so-called chaotic patterns. The present example shows a sensitive dependence on the choice of parameters and initial conditions. Some numerical results are presented for different instances of fractional power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Abraham, Y. Ueda, The Chaos Avant-Garde: Memories of the Early Days of Chaos Theory (World Scientific, Singapore, 2000)

    MATH  Google Scholar 

  2. S. Abuasad, K. Moaddy, I. Hashim, J. King Saud. Univ. Sci. 31, 659–666 (2018)

    Google Scholar 

  3. U.M. Ascher, S.J. Ruth, B.T.R. Wetton, SIAM J. Math. Anal. 32, 797–823 (1995)

    Google Scholar 

  4. U.M. Ascher, S.J. Ruth, R.J. Spiteri, Appl. Numer. Math. 25, 151–167 (1997)

    MathSciNet  Google Scholar 

  5. L.F. Avalos-Ruiz, J.F. Gomez-Aguilar, A. Atangana, K.M. Owolabi, On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory. Chaos Solitons Fractals 127, 364–388 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  6. A.T. Azar et al., Complexity 2017(7871467), 1–11 (2017)

    Google Scholar 

  7. D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods (World Scientific, Singapore, 2009)

    MATH  Google Scholar 

  8. A. Bueno-Orovio, D. Kay, K. Burrage, BIT 54, 937–954 (2014)

    MathSciNet  Google Scholar 

  9. K. Burrage, N. Hale, D. Kay, SIAM J. Sci. Comput. 34, A2145–A2172 (2012)

    Google Scholar 

  10. A. Buscarino, C. Famoso, L. Fortuna, M. Frasca, A new chaotic electro-mechanical oscillator. Int. J. Bifurc. Chaos Appl. Sci. Eng. 26, 1650161 (2016)

    MathSciNet  MATH  Google Scholar 

  11. G. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Google Scholar 

  12. S. Cicek, A. Ferikoglu, I. Pehlivan, A new 3D chaotic system: dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application. Optik Int. J. Light Electron. Opt. 127, 4024–4030 (2016)

    Google Scholar 

  13. I. Danaila, P. Joly, S.M. Kaber, M. Postel, An Introduction to Scientific Computing (Springer, New York, 2007)

    MATH  Google Scholar 

  14. E.F. Doungmo Goufo, Chaos 26, 084305 (2016)

    ADS  MathSciNet  Google Scholar 

  15. E.F. Doungmo Goufo, J.J. Nieto, J. Comput. Appl. Math. 339, 329–342 (2018)

    MathSciNet  Google Scholar 

  16. S.M. El-Sayed, D. Kaya, Appl. Math. Comput. 150, 763–773 (2004)

    MathSciNet  Google Scholar 

  17. F. Ginelli, P. Poggi, A. Turchi, H. Chate, R. Livi, A. Politi, Characterizing dynamics with covariant Lyapunov vectors. Phys. Rev. Lett. 99, 130601 (2007)

    ADS  Google Scholar 

  18. P.K. Gupta, A. Yildirim, K. Rai, Int. J. Numer. Methods Heat Fluid Flow 22, 424–435 (2012)

    Google Scholar 

  19. M. Ilić, F. Liu, I. Turner, V. Anh, Fract. Calc. Appl. Anal. 8, 323–341 (2005)

    MathSciNet  Google Scholar 

  20. M. Ilić, F. Liu, I. Turner, V. Anh, Fract. Calc. Appl. Anal. 9, 333–349 (2006)

    MathSciNet  Google Scholar 

  21. V.G. Ivancevic, T.I. Tijana, Complex Nonlinearity: Chaos, Phase Transitions, Topology Change, and Path Integrals (Springer, Berlin, 2008)

    MATH  Google Scholar 

  22. A.K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    MathSciNet  Google Scholar 

  23. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  24. D. Li, C. Zhang, W. Wang, Y. Zhang, Appl. Math. Model. 35, 2711–2722 (2011)

    MathSciNet  Google Scholar 

  25. Z. Lin, S. Yu, C. Li, J. Lu, Q. Wang, Design and smartphone-based implementation of a chaotic video communication scheme via WAN remote transmission. Int. J. Bifurc. Chaos Appl. Sci. Eng. 26, 1650158 (2016)

    MathSciNet  Google Scholar 

  26. H. Liu, A. Kadir, Y. Li, Optik 127, 5812–5819 (2016)

    ADS  Google Scholar 

  27. H. Liu, A. Kadir, Y. Li, Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Optik 127, 7431–7438 (2016)

    ADS  Google Scholar 

  28. E.N. Lorenz, Int. J. Atmos. Sci. 20, 130–141 (1963)

    ADS  Google Scholar 

  29. R.L. Magin, Fractional Calculus in Bioengineering (Begell House Publisher Inc, Connecticut, 2006)

    Google Scholar 

  30. A.S. Mansingka, M. Affan Zidan, M.L. Barakat, A.G. Radwan, K.N. Salama, Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77 Gbits/s. Microelectron. J. 44, 744–752 (2013)

    Google Scholar 

  31. M.M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, 80–90 (2006)

    MathSciNet  Google Scholar 

  32. L. Min, X. Yang, G. Chen, D. Wang, Some polynomial chaotic maps without equilibria and an application to image encryption with avalanche effects. Int. J. Bifurc. Chaos 25, 1550124 (2015)

    MathSciNet  MATH  Google Scholar 

  33. L. Mu, J. Wang, X. Ye, IMA J. Numer. Anal. 35, 1228–1255 (2015)

    MathSciNet  Google Scholar 

  34. H. Munthe-Kaas, Appl. Numer. Math. 29, 115–127 (1999)

    MathSciNet  Google Scholar 

  35. K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 131, 335 (2016)

    Google Scholar 

  36. K.M. Owolabi, A. Atangana, Chaos Solitons Fract. 115, 362–370 (2018)

    ADS  Google Scholar 

  37. K.M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation (Springer, Singapore, 2019)

    MATH  Google Scholar 

  38. K.M. Owolabi, Chaos Solitons Fract. 34, 109723 (2020)

    ADS  MathSciNet  Google Scholar 

  39. K.M. Owolabi, Numerical approach to chaotic pattern formation in diffusive predator–prey system with Caputo fractional operator 1–21 (2020). https://doi.org/10.1002/num.22522

  40. K.M. Owolabi, J.F. Gómez-Aguilar, G. Fernández-Anaya, J.E. Lavín-Delgado, E. Hernández-Castillo, Modelling of Chaotic processes with Caputo fractional order derivative. Entropy 22, 1027 (2020)

    ADS  Google Scholar 

  41. I. Podlubny, Fractional Differential Equations (Academic press, New York, 1999)

    MATH  Google Scholar 

  42. A.D. Polyanin, V.E. Nazaikinskii, Handbook of Linear Partial Differential Equations for Engineers and Scientists (CRC Press, Boca Raton, 2015)

    MATH  Google Scholar 

  43. A.G. Radwan, A.M. Soliman, A.-L. El-Sedeek, An inductorless CMOS realization of Chua’s circuit. Chaos Solitons Fract. 18, 149–158 (2003)

    ADS  Google Scholar 

  44. A.G. Radwan, A.M. Soliman, A.S. Elwakil, 1-D digitally controlled multiscroll chaos generator. Int. J. Bifurc. Chaos 17, 227–242 (2007)

    MATH  Google Scholar 

  45. A.G. Radwan, K. Moaddy, K.N. Salama, S. Momani, I. Hashim, J. Adv. Res. 5, 125–132 (2014)

    Google Scholar 

  46. J. Roop, J. Comput, Appl. Math. 193, 243–268 (2005)

    Google Scholar 

  47. O. Rössler, Phys. Lett. A 57, 397–398 (1976)

    ADS  Google Scholar 

  48. S. Ruuth, J. Math. Biol. 34, 148–176 (1995)

    MathSciNet  Google Scholar 

  49. J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Netherlands, 2007)

    MATH  Google Scholar 

  50. L.A. Safonov, E. Tomer, V.V. Strygin, Y. Ashkenazy, S. Havlin, Chaos 12, 1006–1014 (2002)

    ADS  MathSciNet  Google Scholar 

  51. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993)

    MATH  Google Scholar 

  52. J.C. Sprott, Elegant Chaos Algebraically Simple Chaotic Flows (World Scientific, Singapore, 2010)

    MATH  Google Scholar 

  53. J.C. Strikwerda, Partial Difference Schemes and Partial Differential Equations (SIAM, Philadelphia, 2004)

    MATH  Google Scholar 

  54. S.H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Chemistry and Engineering (Perseus Books, Massachusetts, USA, 1994)

    Google Scholar 

  55. V.E. Tarasov, Nonlinear Dyn. 86, 1745–1759 (2016)

    Google Scholar 

  56. J.W. Thomas, Numerical Partial Differential Equations Numerical Partial Differential Equations—Finite Difference Methods (Springer, New York, 1995)

    MATH  Google Scholar 

  57. L.L. Thompson, P.M. Pinsky, Int. J. Numer. Methods Eng. 38, 371–397 (1995)

    Google Scholar 

  58. C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, A chaotic path planning generator for autonomous mobile Robots. Robot Auton. Syst. 60, 651–656 (2012)

    Google Scholar 

  59. Z. Wang, Y. Sun, B.J. van Wyk, G. Qi, M.A. van Wyk, Braz. J. Phys. 39, 547–553 (2009)

    ADS  Google Scholar 

  60. Z. Wang, G. Qi, Y. Sun, B.J. van Wyk, M.A. van Wyk, Nonlinear Dyn. 60, 443–457 (2010)

    Google Scholar 

  61. B. Wang, S. Zhou, X. Zheng et al., Image watermarking using chaotic map and DNA coding. Optik Int. J. Light Electron. Opt. 126, 4846–4851 (2015)

    Google Scholar 

  62. J. Wu, L. Wang, G. Chen, S. Duan, Chaos Solitons Fract. 92, 20–29 (2016)

    ADS  Google Scholar 

  63. R. Wu, C. Wang, Int. J. Bifurc. Chaos 26(1650145), 1–11 (2016)

    Google Scholar 

  64. Q. Yang, F. Liu, I. Turner, Appl. Math. Model. 34, 200–218 (2010)

    MathSciNet  Google Scholar 

  65. G.M. Zaslavsky, Phys. Rep. 371, 461–580 (2002)

    ADS  MathSciNet  Google Scholar 

  66. F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    MathSciNet  Google Scholar 

  67. W. Zhang, Y. Dai, JAMP 1, 18–24 (2013)

    Google Scholar 

  68. M.A. Zidan, A.G. Radwan, K.N. Salama, Int. J. Bifurc. Chaos 22, 1250143 (2012)

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the Managing Editor, Prof. S. Banerjee and anonymous referees for their careful reading and valuable comments, which help to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi.

Ethics declarations

Conflict of interest

The author has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, K.M. Computational techniques for highly oscillatory and chaotic wave problems with fractional-order operator. Eur. Phys. J. Plus 135, 864 (2020). https://doi.org/10.1140/epjp/s13360-020-00873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00873-z

Navigation