Skip to main content
Log in

On inner geometry of noncommutative operator graphs

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Operator systems (noncommutative operator graphs in other terminology) play a major role in the theory of quantum error correcting codes. Any operator graph is associated with a number of quantum channels. The possibility to transmit quantum information through a quantum channel with zero error is determined by the geometrical properties of the corresponding graph. Noncommutative operator graphs are known to be generated by positive operator-valued measures (POVMs). In turn, many principal POVMs consist of multiple of projections. We construct the model in which the graph is a linear envelope of two projection-valued resolutions of identities in a Hilbert space. Conditions for the existence of quantum anticliques (error-correcting codes) for the graph are investigated. The connection with Shirokov’s example of quantum superactivation (Shirokov in Probl Inform Transm 51(2):87–102, 2015; Shirokov and Shulman in Commun Math Phys 335:1159, 2015) is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Choi, E.G. Effros, J. Funct. Anal. 2(4), 156–209 (1977)

    Article  Google Scholar 

  2. E. Knill, R. Laflamme, Phys. Rev. A 55, 900 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.E. Shirokov, T. Shulman, Commun. Math. Phys. 335, 1159 (2015)

    Article  ADS  Google Scholar 

  4. R. Duan, arXiv:0906.2527 (2009)

  5. V.I. Yashin, Quantum Inf. Process. 19, 195 (2020)

    Article  ADS  Google Scholar 

  6. P. Shor, Phys. Rev. A 52, 2493 (1995)

    Article  ADS  Google Scholar 

  7. N. Weaver, Proc. Am. Math. Soc. 145, 4595–4605 (2017)

    Article  Google Scholar 

  8. G.G. Amosov, A.S. Mokeev, Int. J. Theor. Phys. (2018). https://doi.org/10.1007/s10773-018-3963-4

    Article  Google Scholar 

  9. G.G. Amosov, A.S. Mokeev, Quantum Inf. Process. 17, 325 (2018)

    Article  ADS  Google Scholar 

  10. G.G. Amosov, A.S. Mokeev, Lobachevskii J. Math. 40, 1440 (2019)

    Article  MathSciNet  Google Scholar 

  11. G.G. Amosov, A.S. Mokeev, A.N. Pechen, Quantum Inf. Process. 19, 95 (2020)

    Article  ADS  Google Scholar 

  12. M.E. Shirokov, Probl. Inform. Transm. 51(2), 87–102 (2015)

    Article  Google Scholar 

  13. G. Smith, J. Yard, Science 321, 1812 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. G.G. Amosov, IYu. Zhdanovskii, Math. Notes 99(6), 924–927 (2016)

    Article  MathSciNet  Google Scholar 

  15. G.G. Amosov, I.Yu. Zhdanovskii, J. Math. Sci. (N. Y.) 215:6, 659–676 (2016)

    Article  Google Scholar 

  16. D. Felice, S. Mancini, M. Pettini, J. Math. Phys. 55, 043505 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. A.S. Holevo, Quantum System, Channels, Information (De Gruyter, Berlin, 2012)

    Book  Google Scholar 

  18. D. Felice, C. Cafaro, S. Mancini, Chaos 28, 032101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Science and Higher Education of the Russian Federation (grant number 075-15-2020-788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Amosov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosov, G.G. On inner geometry of noncommutative operator graphs. Eur. Phys. J. Plus 135, 865 (2020). https://doi.org/10.1140/epjp/s13360-020-00871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00871-1

Navigation