Skip to main content
Log in

Effects of thermal and concentration convection and induced magnetic field on peristaltic flow of Williamson nanofluid in inclined uniform channel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Noteworthiness of double-diffusive convection with nanofluids by induced magnetic field and diverse wave shapes for peristaltic stream of Williamson fluid in a uniform channel has been theoretically examined. Mathematical formulation of two-directional and two-dimensional flow of a Williamson fluid model is explained in detail. The exact solutions of nanoparticles are described. Perturbation solutions of nonlinear PDEs are also calculated. Numerical and graphical results are displaced to see the conduct of temperature, concentration, nanoparticle volume fraction, pressure rise, pressure gradient, magnetic force function and stream functions. It is concluded that the profile of temperature increases and profile of concentration decreases by increasing values of Brownian motion parameter \( N_{\text{b}} \), thermophoresis parameter \( N_{\text{t}} \), Dufour parameter \( N_{TC} \) and Soret parameter \( N_{CT} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. T. W. Latham, Fluid motion in a peristaltic pump, M.Sc. Thesis, MIT, Cambridge (1966)

  2. A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number. Cambridge University Press 37, 799–825 (1969)

    Google Scholar 

  3. R. Ellahi, M. Mubeshir Bhatti, C.M. Khalique, Three-dimensional flow analysis of Carreau fluid model induced by peristaltic wave in the presence of magnetic field. J. Mol. Liq. 241, 1059–1068 (2017)

    Article  Google Scholar 

  4. A. Riaz, A. Zeeshan, S. Ahmad, A. Razaq, M. Zubair, Effects of external magnetic field on Non-newtonian two phase fluid in an annulus with peristaltic pumping. J. Magn. 24, 1–8 (2019)

    Article  Google Scholar 

  5. S. Akram, K.S. Mekheimer, Y. Abd Elmaboud, Particulate suspension slip flow induced by peristaltic waves in a rectangular duct: effect of lateral walls. Alex. Eng. J. 57, 407–414 (2018)

    Article  Google Scholar 

  6. R. Ellahi, M. Mubashir Bhatti, K. Vafai, Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int. J. Heat Mass Transf. 71, 706–719 (2014)

    Article  Google Scholar 

  7. R. Ellahi, F. Hussain, F. Ishtiaq, A. Hussain, Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: an application to upgrade industrial sieves/filters. Pramana 93(3), 34 (2019)

    Article  ADS  Google Scholar 

  8. M.V. Subba Reddy, M. Mishra, S. Sreenadh, A. Ramachandra Rao, Influence of lateral walls on peristaltic flow in a rectangular duct. J. Fluids Eng. 127, 824–827 (2005)

    Article  Google Scholar 

  9. Naheeda Iftikhar, Abdul Rehman, Peristaltic flow of an Eyring Prandtl fluid in a diverging tube with heat and mass transfer. Int. J. Heat Mass Transf. 111, 667–676 (2017)

    Article  Google Scholar 

  10. S. Nadeem, N.S. Akbar, T. Hayat, S. Obaidat, Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer. Int. J. Heat Mass Transf. A 55, 1855–1862 (2012)

    Article  Google Scholar 

  11. V.I. Vishnyakov, K.B. Pavlov, Peristaltic flow of a conductive liquid in a transverse magnetic field. Magnetohydrodynamics 8, 174–178 (1972)

    Google Scholar 

  12. N.S. Akbar, M. Raza, R. Ellahi, Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis. Appl. Nanosci. 6, 359–370 (2016)

    Article  ADS  Google Scholar 

  13. S. Safia Akram, Nadeem, Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: closed form solutions. J. Magn. Magn. Mater. 328, 11–20 (2013)

    Article  ADS  Google Scholar 

  14. G.C. Shit, M. Roy, E.Y.K. Ng, Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel. Int. J. Numer. Methods Biomed. Eng. 26, 1380–1403 (2010)

    Article  MathSciNet  Google Scholar 

  15. K.S. Mekheimer, Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys. Lett. A 372, 4271–4278 (2008)

    Article  ADS  Google Scholar 

  16. S. U. S Choi, Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of non-Newtonian Flow, ASME FED 66(231)99–105

  17. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 7, 227–233 (1993)

    Article  Google Scholar 

  18. J. Buongiorno, W. Hu, Nanofluid coolants for advanced nuclear power plants, in Proceedings of ICAPP’05, Seoul, 2005, pp. 15–19 (Paper No. 5705)

  19. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  20. J.C.T. Eijkle, A. Van der Berg, Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid. 1, 249–267 (2005)

    Article  Google Scholar 

  21. M. Hassan, R. Ellahi, M.M. Bhatti, A. Zeeshan, A comparitive study of magnetic and non-magnetic particles in nanofluid propigating over over a wedge. Can. J. Phys. 97, 277–285 (2019)

    Article  ADS  Google Scholar 

  22. A. Zeeshan, R. Ellahi, F. Mabood, F. Hussain, Numerical study on bi-phase Coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane. Int. J. Numer. Meth. Heat Fluid Flow 29, 2854–2869 (2019)

    Article  Google Scholar 

  23. A. Zeeshan, S. Nadeem, S. Saleem, R. Ellahi, Numerical study of unsteady flow and heat transfer CNT based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int. J. Numer. Meth. Heat Fluid Flow 29, 4607–4623 (2019)

    Article  Google Scholar 

  24. A. Riaz, S.U. Khan, A. Zeeshan, S.U. Khan, M. Hassan, T. Muhammad, Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09454-9

    Article  Google Scholar 

  25. O. Mahian, L. Kolsi, M. Amani, P. Estelle, G. Ahmadi, C. Kleinstreuer, J.S. Marshalli, M. Siavashi, R.A. Taylor, H. Niazmand, S. Wongwises, T. Hayat, A. Kolanjiyil, A. Kasaeian, I. Pop, Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys. Rep. 790, 1–48 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. N.S. Akbar, S. Nadeem, Endoscopic effects on peristaltic flow of a nanofluid. Commun. Theor. Phys. 56, 761–768 (2011)

    Article  ADS  Google Scholar 

  27. A. Ebaid, E.H. Aly, Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: application to the cancer treatment. Comput. Math. Methods Med. 825376, 8 (2013)

    MathSciNet  MATH  Google Scholar 

  28. S. Akram, S. Nadeem, Influence of nanoparticles phenomena on the peristaltic flow of pseudoplastic fluid in an inclined asymmetric channel with different wave forms. Iran. J. Chem. Chem. Eng. 36, 107–124 (2017)

    Google Scholar 

  29. R. Ellahi, A. Zeeshan, F. Hussain, A. Asadollahi, Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry 11(2), 276 (2019)

    Article  Google Scholar 

  30. T. Hayat, B. Ahmed, F.M. Abbasi, A. Alsaedi, Numerical investigation for peristaltic flow of Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. J. Therm. Anal. Calorim. 137, 1359–1367 (2019)

    Article  Google Scholar 

  31. M. Kothandapani, J. Prakash, Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int. J. Heat Mass Transf. 81, 234–245 (2015)

    Article  Google Scholar 

  32. S. Mosayebidorcheh, M. Hatami, Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part I: Straight channel). Int. J. Heat Mass Transf. 126, 790–799 (2018)

    Article  Google Scholar 

  33. O. Anwar Bég, D. Tripathi, Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids a bio-nanoengineering model. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 225, 99–114 (2012)

    Google Scholar 

  34. S. Akram, M. Zafar, S. Nadeem, Peristaltic transport of a Jeffrey fluid with double-diffusive convection in nanofluids in the presence of inclined magnetic field. Int. J. Geom. Methods Mod. Phys. 15, 1850181 (2018)

    Article  MathSciNet  Google Scholar 

  35. A.V. Kuznetsov, D.A. Nield, Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 50, 712–717 (2011)

    Article  Google Scholar 

  36. A. Sharma, D. Tripathi, R.K. Sharma, A.K. Tiwari, Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids. Phys. A 535, 122148 (2019)

    Article  MathSciNet  Google Scholar 

  37. H. Alolaiyan, A. Riaz, A. Razaq, N. Saleem, A. Zeeshan, M.M. Bhatti, Effects of double diffusion convection on Third grade nanofluid through a curved compliant peristaltic channel. Coatings 10(2), 154 (2020)

    Article  Google Scholar 

  38. S. Akram, A. Razia, F. Afzal, Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-020-01685-4

    Article  Google Scholar 

  39. S. Akram, M. Zafar, A. Hussain, M.A. Rana, Effects of inclined magnetic field on peristaltic flow of a hyperbolic tangent fluid model with double-diffusive convection in nanofluids. Rev. Tec. de la Fac. de Ing. Univ. del Zulia 39, 186–207 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Akram.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix

Appendix

$$ \begin{aligned} \kappa_{1} &= \frac{{N_{b} + N_{t} }}{{h\left( {1 - N_{CT} N_{TC} } \right)}},\quad \kappa_{2} = \frac{{\kappa_{1} e^{{\kappa_{1} h}} \left( {N_{b} \left( {G_{rt} - N_{CT} G_{rc} } \right) + G_{rF} N_{t} } \right)}}{{N_{b} \left( {e^{{\kappa_{1} h}} - 1} \right)}}, \\ \kappa_{3} &= \frac{{N_{b} \left( {N_{CT} + 1} \right)G_{rc} - G_{rF} \left( {N_{b} + N_{t} } \right)}}{{hN_{b} }},\quad \kappa_{4} = 2C_{1}^{2} M^{6} + 2C_{2}^{2} M^{6} , \\ \kappa_{5} &= \frac{{2\kappa_{2} M^{2} \left( {C_{2} \left( {\kappa_{1}^{2} + M^{2} } \right) - 2C_{1} \kappa_{1} M} \right)}}{{M^{2} - \kappa_{1}^{2} }},\quad \kappa_{6} = \frac{{2\kappa_{1}^{4} \kappa_{2} \kappa_{3} }}{{M^{2} \left( {\kappa_{1}^{2} M^{2} - \kappa_{1}^{4} } \right)}}, \\ \kappa_{7} &= \frac{{4\kappa_{1}^{6} \kappa_{2}^{2} }}{{\left( {\kappa_{1}^{2} M^{2} - \kappa_{1}^{4} } \right)^{2} }},\quad \kappa_{8} = \left( {2\kappa_{2} M^{4} \cosh (hM) + 2\kappa_{1} \kappa_{2} M^{3} \sinh (hM)} \right), \\ \kappa_{9} &= \kappa_{1}^{2} \kappa_{3} \left( {\kappa_{1}^{2} - M^{2} } \right)\left( {h^{2} M^{2} - 2hM\sinh (hM) + 2\cosh (hM) - 2} \right), \\ \kappa_{10} &= \kappa_{1}^{2} \left( {M^{3} \sinh (hM) - \kappa_{2} (\cosh (hM) - 1)} \right) - M\kappa_{1}^{4} \sinh (hM), \\ \end{aligned} $$
$$ \begin{aligned} \kappa_{11} &= \left( {2\kappa_{1} - M} \right)\left( {M^{2} - \kappa_{1}^{2} } \right)\left( {\kappa_{1} \left( {2M - \kappa_{1} } \right)\left( {3C_{1} \kappa_{3} M^{2} - 2\kappa_{4} } \right) + 6\kappa_{5} M^{2} } \right), \\ \kappa_{12} &= \kappa_{6} \left( {h\kappa_{1} + 1} \right)\left( {M - \kappa_{1} } \right)\left( {2M - \kappa_{1} } \right)\left( {2\kappa_{1} + M} \right)\left( {M - 2\kappa_{1} } \right), \\ \kappa_{13} &= C_{1} \kappa_{3} \left( {\left( {h^{2} M^{2} + 2} \right)\cosh (hM) - 2hM\sinh (hM) - 2} \right), \\ \kappa_{14} &= \left( {8\kappa_{4} \sinh^{4} \left( {\frac{hM}{2}} \right)\left( {2hM\coth \left( {\frac{hM}{2}} \right) - 1} \right) + 12M^{2} \kappa_{13} } \right), \\ \kappa_{15} &= - \kappa_{1}^{2} \left( {4\kappa_{5} + 3\left( {4\kappa_{6} + \kappa_{7} } \right)} \right) + 3\left( {4\kappa_{6} + \kappa_{7} } \right)M^{2} + \kappa_{1} \left( { - 8\kappa_{5} + 4\kappa_{6} + \kappa_{7} } \right)M, \\ \kappa_{16} &= \left( {M - \kappa_{1} } \right)\,\left( {4\kappa_{1}^{2} - M^{2} } \right)\left( {2\kappa_{7} M^{4} - \kappa_{1}^{4} \left( {4\kappa_{5} + \kappa_{7} } \right)} \right), \\ \end{aligned} $$
$$ \begin{aligned} \kappa_{17} &= \left( {M - 2\kappa_{1} } \right)\left( {M - \kappa_{1} } \right)^{2} \left( {2\kappa_{1} + M} \right)\left( {\kappa_{1} + M} \right)(hM\cosh (hM) - \sinh (hM)), \\ \kappa_{18} &= \kappa_{4} - 3M^{2} \left( {\frac{{\kappa_{6} }}{{M^{2} - \kappa_{1}^{2} }} + \frac{{\kappa_{7} }}{{M^{2} - 4\kappa_{1}^{2} }} + \frac{{\kappa_{5} }}{{2\kappa_{1} M - \kappa_{1}^{2} }}} \right), \\ \kappa_{19} &= \frac{{\kappa_{7} \left( {2\kappa_{1} \sinh (hM) + M\cosh (hM)} \right)}}{{M^{2} - 4\kappa_{1}^{2} }} - \frac{{4\kappa_{1} \kappa_{5} e^{{h\kappa_{1} }} \left( {\kappa_{1} e^{hM} \sinh (hM) + M} \right)}}{{\left( {M - \kappa_{1} } \right)^{2} \left( {\kappa_{1} - 2M} \right)}}, \\ \kappa_{20} &= \frac{{2\left( {\kappa_{4} - 30C_{1} \kappa_{3} M^{2} } \right)}}{{M^{4} }} - 24C_{5} - \frac{{6\kappa_{7} }}{{\kappa_{1}^{2} M^{2} - 4\kappa_{1}^{4} }} + \frac{{24\kappa_{5} M}}{{\kappa_{1} \left( {2M - \kappa_{1} } \right)\left( {\kappa_{1} - M} \right)^{3} }}, \\ \kappa_{21} &= \frac{{\sinh (hM)\left( {12\kappa_{3} M^{2} \left( {7C_{1} - 2C_{2} hM} \right) + 24C_{5} M^{4} } \right)}}{{M^{5} }} - \frac{{\kappa_{4} \sinh (2hM)}}{{M^{5} }}, \\ \kappa_{22} &= \frac{{\cosh (hM)\left( {12\kappa_{3} M^{2} \left( {7C_{2} - 2C_{1} hM} \right) + 24C_{6} M^{4} } \right)}}{{M^{5} }} - \frac{{3\kappa_{7} e^{{ - 2h\kappa_{1} }} }}{{\kappa_{1}^{3} M^{2} - 4\kappa_{1}^{5} }} + \kappa_{21} , \\ \kappa_{23} &= - \frac{{6C_{1} M\sinh (hM) + 6C_{2} M\cosh (hM) + h^{3} \kappa_{3} }}{{M^{2} }} + \frac{{6\kappa_{2} e^{{ - h\kappa_{1} }} }}{{\kappa_{1}^{3} M^{2} - \kappa_{1}^{5} }}, \\ \kappa_{24} &= \frac{{2\left( {\kappa_{4} - 30C_{1} \kappa_{3} M^{2} } \right)}}{{M^{4} }} - \frac{{6\kappa_{7} }}{{\kappa_{1}^{2} M^{2} - 4\kappa_{1}^{4} }} + \frac{{24\kappa_{5} M}}{{\kappa_{1} \left( {2M - \kappa_{1} } \right)\left( {\kappa_{1} - M} \right)^{3} }}, \\ \kappa_{25} &= \frac{{24e^{{ - h\kappa_{1} }} \left( {\kappa_{1}^{2} \kappa_{5} \left( {\kappa_{1} + M} \right)e^{hM} - \kappa_{6} \left( {2M - \kappa_{1} } \right)\left( {M - \kappa_{1} } \right)^{2} } \right)}}{{\kappa_{1}^{3} \left( {2M - \kappa_{1} } \right)\left( {\kappa_{1} + M} \right)\left( {\kappa_{1} - M} \right)^{3} }}, \\ \end{aligned} $$
$$ \begin{aligned} C_{1} &= - \frac{{\kappa_{3} }}{{M^{4} }} - \frac{{\kappa_{2} }}{{M^{4} - \kappa_{1}^{2} M^{2} }}, \\ C_{2} &= \frac{{2M^{2} \left( {\kappa_{1}^{2} \left( {\kappa_{2} (hM\sinh (hM) - \cosh (hM) + 1) - hM^{4} } \right) + h\kappa_{1}^{4} M^{2} - \kappa_{2} M^{2} } \right) + \kappa_{9} }}{{2\kappa_{1}^{2} M^{4} \left( {M^{2} - \kappa_{1}^{2} } \right)(hM\cosh (hM) - \sinh (hM))}} \\ & \quad + \frac{{F_{0} \left( {2\kappa_{1}^{2} M^{6} - 2\kappa_{1}^{4} M^{4} } \right) + e^{{ - \kappa_{1} h}} \left( { - 2h\kappa_{1} \kappa_{2} M^{4} - 2\kappa_{2} M^{4} } \right)}}{{2\kappa_{1}^{2} M^{4} \left( {\kappa_{1}^{2} - M^{2} } \right)(hM\cosh (hM) - \sinh (hM))}}, \\ C_{3} &= \frac{{\kappa_{1}^{2} \kappa_{3} - \kappa_{2} M^{2} }}{{M^{4} \kappa_{1}^{2} }}, \\ \end{aligned} $$
$$ \begin{aligned} C_{4} &= \frac{{F_{0} \left( {2\kappa_{1}^{4} M^{4} \cosh (hM) - 2\kappa_{1}^{2} M^{6} \cosh (hM)} \right) + e^{{ - \kappa_{1} h}} \kappa_{8} - 2M^{2} (\kappa_{10} + \kappa_{2} M^{2} \cosh (hM)}}{{2\kappa_{1}^{2} M^{3} \left( {\kappa_{1}^{2} - M^{2} } \right)(hM\cosh (hM) - \sinh (hM))}} \\ & \quad + \frac{{\kappa_{1}^{2} \kappa_{3} \left( {M^{2} - \kappa_{1}^{2} } \right)\left( {\left( {h^{2} M^{2} + 2} \right)\cosh (hM) - 2hM\sinh (hM) - 2} \right)}}{{2\kappa_{1}^{2} M^{3} \left( {\kappa_{1}^{2} - M^{2} } \right)(hM\cosh (hM) - \sinh (hM))}}, \\ \end{aligned} $$
$$ \begin{aligned} C_{5} &= \frac{{\kappa_{11} }}{{6\kappa_{1} M^{4} \left( {M - 2\kappa_{1} } \right)\left( {M - \kappa_{1} } \right)\left( {2M - \kappa_{1} } \right)\left( {\kappa_{1} + M} \right)}} + \frac{{\kappa_{6} \left( {2\kappa_{1} - M} \right)}}{{M^{2} \left( {M - 2\kappa_{1} } \right)\left( {M - \kappa_{1} } \right)\left( {\kappa_{1} + M} \right)}} \\ & \quad - \frac{{\kappa_{7} }}{{M^{2} \left( {M - 2\kappa_{1} } \right)\left( {2\kappa_{1} + M} \right)}}, \\ \end{aligned} $$
$$ \begin{aligned} C_{6} &= \frac{{C_{2} \left( {2C_{1} M^{4} (2hM\cosh (2hM) - \sinh (2hM)) + 3\kappa_{3} \left( {\left( {2h^{2} M^{2} + 5} \right)\sinh (hM) - 5hM\cosh (hM)} \right)} \right)}}{{6M^{2} (hM\cosh (hM) - \sinh (hM))}} \\ & \quad - \frac{{\kappa_{1} \kappa_{5} e^{{h\left( {M - \kappa_{1} } \right)}} \left( {4h\kappa_{1}^{4} + M^{3} (hM - 1) + 4\kappa_{1}^{3} - \kappa_{1} M^{2} } \right) + e^{{ - \kappa_{1} h}} (\kappa_{5} \kappa_{1}^{3} Me^{hM} (5hM - 4) + \kappa_{12} )}}{{\kappa_{17} \kappa_{1}^{2} \left( {2M - \kappa_{1} } \right)}} \\ & \quad + \frac{{\kappa_{6} \left( {\kappa_{1}^{2} \left( {hM\left( {\kappa_{1}^{2} + 2M^{2} - 3\kappa_{1} M} \right)\sinh (hM) - \left( {\kappa_{1}^{2} + 2M^{2} - 3\kappa_{1} M} \right)\cosh (hM) + \kappa_{1}^{2} } \right) - 2M^{4} } \right)}}{{\kappa_{1}^{2} M^{2} \left( {M - \kappa_{1} } \right)^{2} \left( {2M - \kappa_{1} } \right)\left( {\kappa_{1} + M} \right)(hM\cosh (hM) - \sinh (hM))}} \\ & \quad + \frac{{\kappa_{1}^{2} \left( {M^{2} - 4\kappa_{1}^{2} } \right)\,\kappa_{14} + 3M^{4} \kappa_{7} e^{{ - 2\kappa_{1} h}} \left( {2h\kappa_{1} + 1} \right)}}{{12\kappa_{1}^{2} \left( {M^{2} - 4\kappa_{1}^{2} } \right)\,M^{4} (hM\cosh (hM) - \sinh (hM))}} + \frac{{\left( {\kappa_{1} M\left( {M - 2\kappa_{1} } \right)\,\left( {2\kappa_{1} + M} \right)\kappa_{15} + \kappa_{16} } \right)}}{{4\kappa_{1}^{2} M^{2} \left( {2M - \kappa_{1} } \right)\kappa_{17} }} \\ & \quad + \frac{{\left( {\kappa_{5} \left( {M^{2} - 4\kappa_{1}^{2} } \right) + \kappa_{1} \kappa_{7} \left( {2M - \kappa_{1} } \right)} \right)(Mh\sinh (hM) - \cosh (hM))}}{{\kappa_{1} M^{2} \left( {M - 2\kappa_{1} } \right)\left( {2M - \kappa_{1} } \right)\left( {2\kappa_{1} + M} \right)(hM\cosh (hM) - \sinh (hM))}} \\ & \quad + \frac{{F_{1} }}{\sinh (hM) - hM\cosh (hM)}, \\ \end{aligned} $$
$$ C_{7} = - \frac{{2C_{1} \kappa_{3} }}{{M^{2} }} - \frac{{\left( {4\left( {\kappa_{5} + \kappa_{6} } \right) + \kappa_{7} } \right)M^{2} + \kappa_{4} \left( {M - \kappa_{1} } \right)^{2} }}{{4M^{4} \left( {M - \kappa_{1} } \right)^{2} }} - \frac{{\left( {4\kappa_{6} + \kappa_{7} } \right)\left( {M - 2\kappa_{1} } \right)}}{{4\kappa_{1}^{2} M\left( {M - \kappa_{1} } \right)^{2} }}, $$
$$ \begin{aligned} C_{8} &= - \frac{{e^{{ - \kappa_{1} h}} \kappa_{6} \left( {\kappa_{1} \sinh (hM) + M\cosh (hM)} \right)}}{{\kappa_{1}^{2} \left( {M^{2} - \kappa_{1}^{2} } \right)(hM\cosh (hM) - \sinh (hM))}} - \frac{{\left( {4\kappa_{6} + \kappa_{7} } \right)\left( {6\kappa_{1} M^{3} - 3M^{4} } \right)\cosh (hM)}}{{12\kappa_{1}^{2} M^{3} \left( {M - \kappa_{1} } \right)^{2} (hM\cosh (hM) - \sinh (hM))}} \\ & \quad + \frac{{3M^{2} \left( {F_{1} M^{2} \cosh (hM) - 4C_{1} \kappa_{3} \sinh^{4} \left( {\tfrac{hM}{2}} \right)} \right) + \kappa_{3} C_{2} (2hM - \sinh (2hM)) - 2\kappa_{18} }}{{6M^{3} \left( {hM\cosh (hM) - \sinh (hM)} \right)}} \\ & \quad + \frac{{2M\kappa_{1} \kappa_{4} \cosh (hM)(\cosh (2hM) - 5) - \kappa_{1}^{2} \kappa_{4} \cosh (hM)(\cosh (2hM) - 5)}}{{12M^{3} \left( {M - \kappa_{1} } \right)^{2} (hM\cosh (hM) - \sinh (hM))}} \\ & \quad - \frac{{3e^{{ - 2h\kappa_{1} }} \kappa_{19} + 64\kappa_{1}^{2} C_{2} C_{1} M^{3} \sinh^{3} \left( {\tfrac{hM}{2}} \right)\cosh^{3} \left( {\tfrac{hM}{2}} \right)}}{{12\kappa_{1}^{2} (hM\cosh (hM) - \sinh (hM))}} \\ & \quad - \frac{{\cosh (hM)\left( {\kappa_{4} (\cosh (2hM) - 5) - 3\left( {4\left( {\kappa_{5} + \kappa_{6} } \right) + \kappa_{7} } \right)} \right)}}{{12M\left( {M - \kappa_{1} } \right)^{2} (hM\cosh (hM) - \sinh (hM))}} \\ & \quad - \frac{{\left( {4\kappa_{6} + \kappa_{7} } \right)\left( {6\kappa_{1} M^{3} - 3M^{4} } \right)\cosh (hM)}}{{12\kappa_{1}^{2} M^{3} \left( {M - \kappa_{1} } \right)^{2} (hM\cosh (hM) - \sinh (hM))}}, \\ \end{aligned} $$
$$ \begin{aligned} C_{9} &= \frac{1}{6}hR_{m} \left( { - 6C_{1} - \frac{{6\kappa_{1} \kappa_{2} }}{{\kappa_{1}^{3} M^{2} - \kappa_{1}^{5} }}} \right) - \frac{1}{6}R_{m} \left( {3h^{2} \left( {A - C_{4} } \right) + \kappa_{23} } \right), \\ C_{10} &= - \frac{1}{6}R_{m} \left( { - 6C_{1} - \frac{{6\kappa_{1} \kappa_{2} }}{{\kappa_{1}^{3} M^{2} - \kappa_{1}^{5} }}} \right), \\ C_{11} &= \frac{{R_{m} }}{12}\left( { - \frac{{24e^{{ - \kappa_{1} h}} \left( {\kappa_{1}^{2} \kappa_{5} \left( {\kappa_{1} + M} \right)e^{hM} - \kappa_{6} \left( {2M - \kappa_{1} } \right)\left( {M - \kappa_{1} } \right)^{2} } \right)}}{{\kappa_{1}^{3} \left( {2M - \kappa_{1} } \right)\left( {\kappa_{1} + M} \right)\left( {\kappa_{1} - M} \right)^{3} }}} \right. \\ & \quad + \kappa_{22} + 12C_{8} h^{2} - 4C_{1} C_{2} M\cosh (2hM) \\ & \quad + h\left. {\left( {\kappa_{20} + \frac{{24\left( {\kappa_{6} \left( {\kappa_{1} - 2M} \right)\left( {M - \kappa_{1} } \right)^{2} + \kappa_{5} \kappa_{1}^{2} \left( {\kappa_{1} + M} \right)} \right)}}{{\kappa_{1}^{2} \left( {\kappa_{1} + M} \right)\left( {\kappa_{1} - 2M} \right)\,\left( {\kappa_{1} - M} \right)^{3} }}} \right)} \right), \\ C_{12} &= - \frac{1}{24}R_{m} \left( {\frac{{24(\kappa_{6} \left( {M - \kappa_{1} } \right)^{2} \left( {\kappa_{1} - 2M} \right) + \kappa_{5} \kappa_{1}^{2} \left( {\kappa_{1} + M} \right))}}{{\kappa_{1}^{2} \left( {\kappa_{1} + M} \right)\left( {\kappa_{1} - 2M} \right)\left( {\kappa_{1} - M} \right)^{3} }} + \kappa_{24} - 24C_{5} } \right). \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, S., Afzal, Q. Effects of thermal and concentration convection and induced magnetic field on peristaltic flow of Williamson nanofluid in inclined uniform channel. Eur. Phys. J. Plus 135, 857 (2020). https://doi.org/10.1140/epjp/s13360-020-00869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00869-9

Navigation