Abstract
The propagation characteristics of small-amplitude electrostatics solitary wave in magnetized dusty plasma in the presence of relativistic thermal ion with non-thermal electron and positron are investigated. Here, Zakharov–Kuznetsov (Z–K) equation is studied to observe the evolution of dust ion acoustic solitary waves with the help of perturbative procedures. In the present plasma system, the Mach number (phase velocity) is found to be in the supersonic range and it decreases (increases) with normalized positron density (thermal ion parameter). On the other hand, the plasma system behaves in the least nonlinear way when the non-thermal parameter of electrons and positrons has the lowest value allowing the solitary wave potential to propagate with maximum value. It is found that the non-thermal parameters of electrons and positrons, relativistic factor and dust density, can effectively control the variation of Mach number. The solitary wave potential has the least value when the thermal ion parameter increases, whereas it is the highest when the positron density has the highest.
Similar content being viewed by others
References
M.M. Rahman, M.S. Alam, A.A. Mamun, Eur. Phys. J. Plus 129, 84 (2014)
R.A. Shahein, J.H. El-Shehri, Chaos. Solitons Fractals 128, 114 (2019)
A.N. Dev, M.K. Deka, Phys. Plasmas 25, 072117 (2018)
M.K. Deka, A.N. Dev, Ann. Phys. 395, 45 (2018)
A.N. Dev, R.K. Kalita, M.K. Deka, K. Goswami, J. Sarma, IEEE Trans. Plasma Sci. Technol. 47, 3271–3280 (2019)
M.K. Deka, N.C. Adhikary, A.P. Misra, H. Bailung, Y. Nakamura, Phys. Plasmas 19, 103704 (2012)
N.C. Adhikary, M.K. Deka, H. Bailung, Phys. Plasmas 16, 063701 (2009)
M.K. Deka, Braz. J. Phys. 46, 672 (2016)
A.N. Dev, J. Sarmah, M.K. Deka, A.P. Misra, N.C. Adhikary, Commun. Theor. Phys. 62, 875 (2014)
M.K. Deka, A.N. Dev, Plasma Phys. Rep. 44, 965 (2018)
A.N. Dev, M.K. Deka, Braz. J. Phys. 47, 532 (2017)
Manoj Kr, Deka, and Apul N. Zeitschrift für Naturforschung A 75(3), 211 (2020)
M.K. Deka, A.N. Dev, Chin. Phys. Lett. 37(1), 016101 (2020)
T. Ohnuma, T. Fujita, S. Adachi, Phys. Rev. Lett. 36, 471 (1976)
E. Okutsu, M. Nakamura, Y. Nakamura, T. Itoh, Plasma Phys. 20, 561 (1977)
H.G. Abdelwahed, E.K. El-Shewy, A.A. Mahmoud, Chin. Phys. Lett. 34, 035202 (2017)
M.S. Alam, M.G. Hafez, M.R. Talukder, M.H. Ali, Chin. Phys. B 26, 095203 (2017)
M.K. Deka, A.N. Dev, A.P. Misra, N.C. Adhikary, Phys. Plasmas 25, 012102 (2018)
M.J. Jian, Y.J. Rong, L.C. Ying, Acta Phys. Sin. 61, 020206 (2012)
C.M. Surko, M. Leventhal, A. Passner, Phys. Rev. Lett. 62, 901 (1989)
C.M. Surko, T.J. Murphy, Phys. Fluids A 2, 1372 (1990)
P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002)
A. Barkan, R.L. Merlino, N. D’Angelo, Planet. Space Sci. 44, 239 (1996)
P.K. Shukla, M. Marklund, Phys. Scr. 113, 36 (2004)
M. Tribeche, H. Pakzad, Astrophys. Space Sci. 339, 237 (2012)
N. Jehan, W. Masood, A. Mirza, Phys. Scr. 80, 035506 (2009)
T. Tajima, K. Shabita, Plasma Astrophysics (Addison-Wesley, New York, 1997)
S.H. Cho, H.J. Lee, Y.S. Kim, Phys. Rev. E 61, 4357 (2000)
J.C. Higdon, R.E. Lingenfelter, R.E. Rothschild, Asyrophys. J. 698, 350 (2009)
A. Paul, A. Das, A. Bandyopadhyay, Plasma Phys. Rep. 43, 218 (2017)
A.E. Dubinov, I.D. Dubinova, V.A. Gordienko, Phys. Plasmas 13, 082111 (2006)
S.I. Popel, S.V. Vladimirov, P.K. Shukla, Phys. Plasmas 2, 716 (1995)
S. Ghosh, R. Baruthram, Astrophys. Space Sci. 314, 121 (2008)
A.E. Dubinov, DYu. Kolotkov, M.A. Sazonkin, Tech. Phys. 57, 585 (2012)
B. Kaur, N.S. Saini, Z. Naturforsch 73, 215 (2018)
S. Guo, L. Mei, A. Sun, Ann. Phys. 332, 38–55 (2012)
O.H. El-Kalaawy, Eur. Phys. J. Plus 133, 58 (2018)
S. Poornakala, A. Das, P.K. Kaw, A. Sen, Z.M. Sheng, Y. Sentoku, K. Mima, K. Nishikawa, Phys. Plasmas 9, 3802 (2002)
J.N. Mohanty, K.C. Baral, Phys. Plasmas 3, 804 (1996)
T.S. Gill, A. Singh, H. Kaur, N.S. Saini, P. Bala, Phys. Lett. A 361, 364 (2007)
T.S. Gill, A.S. Bains, N.S. Saini, Can. J. Phys. 87, 861 (2009)
R. Saeed, A. Shah, M. Noaman-ul-Haq, Phys. Plasmas 17, 102301 (2010)
A. Shah, Q. Haque, S. Mahmood, Astrophys. Space Sci. 335, 529 (2011)
A. Rahman, S. Ali, A.M. Mirza, A. Qamar, Phys. Plasmas 20, 042305 (2013)
B.C. Kalita, R. Das, H.K. Sarmah, Phys. Plasmas 18, 012304 (2011)
V. Muñoz et al., Nonlin. Processes Geophys 21, 217 (2014)
Y. Liang, H.B. Sang, F. Wan, C. Lv, B.S. Xie, Phys. Plasma 22, 073105 (2015)
N. Guessoum, R. Ramaty, R.E. Lingenfelter, Astrophys. J. 378, 170 (1991)
N. Iwamoto, Phys. Rev. E 47, 604 (1993)
G. Banerjee, S. Maitra, Phys. Plasmas 23, 123701 (2016)
B. Boro, A.N. Dev, B.K. Saikia, N.C. Adhikary, Plasma Phys. Rep. 46, 641 (2020)
A. Paul, A. Bandyopadhyay, K.P. Das, Plasma Phys. Rep. 45, 466 (2019)
A. Esfandyari-Kalejahi, M. Afsari-Ghazi, K. Noori, S. Irani, Phys. Plasmas 19, 082308 (2012)
N.S. Saini, B.S. Chahal, A.S. Bains, Astrophys. Space Sci. 347, 129 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dev, A.N., Deka, M.K., Kalita, R.K. et al. Effect of non-thermal electron and positron on the dust ion acoustic solitary wave in the presence of relativistic thermal magnetized ions. Eur. Phys. J. Plus 135, 843 (2020). https://doi.org/10.1140/epjp/s13360-020-00861-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-020-00861-3