Skip to main content
Log in

Effect of non-thermal electron and positron on the dust ion acoustic solitary wave in the presence of relativistic thermal magnetized ions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The propagation characteristics of small-amplitude electrostatics solitary wave in magnetized dusty plasma in the presence of relativistic thermal ion with non-thermal electron and positron are investigated. Here, Zakharov–Kuznetsov (Z–K) equation is studied to observe the evolution of dust ion acoustic solitary waves with the help of perturbative procedures. In the present plasma system, the Mach number (phase velocity) is found to be in the supersonic range and it decreases (increases) with normalized positron density (thermal ion parameter). On the other hand, the plasma system behaves in the least nonlinear way when the non-thermal parameter of electrons and positrons has the lowest value allowing the solitary wave potential to propagate with maximum value. It is found that the non-thermal parameters of electrons and positrons, relativistic factor and dust density, can effectively control the variation of Mach number. The solitary wave potential has the least value when the thermal ion parameter increases, whereas it is the highest when the positron density has the highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.M. Rahman, M.S. Alam, A.A. Mamun, Eur. Phys. J. Plus 129, 84 (2014)

    Article  Google Scholar 

  2. R.A. Shahein, J.H. El-Shehri, Chaos. Solitons Fractals 128, 114 (2019)

    Article  ADS  Google Scholar 

  3. A.N. Dev, M.K. Deka, Phys. Plasmas 25, 072117 (2018)

    ADS  Google Scholar 

  4. M.K. Deka, A.N. Dev, Ann. Phys. 395, 45 (2018)

    ADS  Google Scholar 

  5. A.N. Dev, R.K. Kalita, M.K. Deka, K. Goswami, J. Sarma, IEEE Trans. Plasma Sci. Technol. 47, 3271–3280 (2019)

    ADS  Google Scholar 

  6. M.K. Deka, N.C. Adhikary, A.P. Misra, H. Bailung, Y. Nakamura, Phys. Plasmas 19, 103704 (2012)

    ADS  Google Scholar 

  7. N.C. Adhikary, M.K. Deka, H. Bailung, Phys. Plasmas 16, 063701 (2009)

    ADS  Google Scholar 

  8. M.K. Deka, Braz. J. Phys. 46, 672 (2016)

    ADS  Google Scholar 

  9. A.N. Dev, J. Sarmah, M.K. Deka, A.P. Misra, N.C. Adhikary, Commun. Theor. Phys. 62, 875 (2014)

    Google Scholar 

  10. M.K. Deka, A.N. Dev, Plasma Phys. Rep. 44, 965 (2018)

    ADS  Google Scholar 

  11. A.N. Dev, M.K. Deka, Braz. J. Phys. 47, 532 (2017)

    ADS  Google Scholar 

  12. Manoj Kr, Deka, and Apul N. Zeitschrift für Naturforschung A 75(3), 211 (2020)

    Google Scholar 

  13. M.K. Deka, A.N. Dev, Chin. Phys. Lett. 37(1), 016101 (2020)

    ADS  Google Scholar 

  14. T. Ohnuma, T. Fujita, S. Adachi, Phys. Rev. Lett. 36, 471 (1976)

    ADS  Google Scholar 

  15. E. Okutsu, M. Nakamura, Y. Nakamura, T. Itoh, Plasma Phys. 20, 561 (1977)

    ADS  Google Scholar 

  16. H.G. Abdelwahed, E.K. El-Shewy, A.A. Mahmoud, Chin. Phys. Lett. 34, 035202 (2017)

    ADS  Google Scholar 

  17. M.S. Alam, M.G. Hafez, M.R. Talukder, M.H. Ali, Chin. Phys. B 26, 095203 (2017)

    ADS  Google Scholar 

  18. M.K. Deka, A.N. Dev, A.P. Misra, N.C. Adhikary, Phys. Plasmas 25, 012102 (2018)

    ADS  Google Scholar 

  19. M.J. Jian, Y.J. Rong, L.C. Ying, Acta Phys. Sin. 61, 020206 (2012)

    Google Scholar 

  20. C.M. Surko, M. Leventhal, A. Passner, Phys. Rev. Lett. 62, 901 (1989)

    ADS  Google Scholar 

  21. C.M. Surko, T.J. Murphy, Phys. Fluids A 2, 1372 (1990)

    ADS  Google Scholar 

  22. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002)

    Google Scholar 

  23. A. Barkan, R.L. Merlino, N. D’Angelo, Planet. Space Sci. 44, 239 (1996)

    ADS  Google Scholar 

  24. P.K. Shukla, M. Marklund, Phys. Scr. 113, 36 (2004)

    Google Scholar 

  25. M. Tribeche, H. Pakzad, Astrophys. Space Sci. 339, 237 (2012)

    ADS  Google Scholar 

  26. N. Jehan, W. Masood, A. Mirza, Phys. Scr. 80, 035506 (2009)

    ADS  Google Scholar 

  27. T. Tajima, K. Shabita, Plasma Astrophysics (Addison-Wesley, New York, 1997)

    Google Scholar 

  28. S.H. Cho, H.J. Lee, Y.S. Kim, Phys. Rev. E 61, 4357 (2000)

    ADS  Google Scholar 

  29. J.C. Higdon, R.E. Lingenfelter, R.E. Rothschild, Asyrophys. J. 698, 350 (2009)

    ADS  Google Scholar 

  30. A. Paul, A. Das, A. Bandyopadhyay, Plasma Phys. Rep. 43, 218 (2017)

    Article  ADS  Google Scholar 

  31. A.E. Dubinov, I.D. Dubinova, V.A. Gordienko, Phys. Plasmas 13, 082111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.I. Popel, S.V. Vladimirov, P.K. Shukla, Phys. Plasmas 2, 716 (1995)

    Article  ADS  Google Scholar 

  33. S. Ghosh, R. Baruthram, Astrophys. Space Sci. 314, 121 (2008)

    Article  ADS  Google Scholar 

  34. A.E. Dubinov, DYu. Kolotkov, M.A. Sazonkin, Tech. Phys. 57, 585 (2012)

    Article  Google Scholar 

  35. B. Kaur, N.S. Saini, Z. Naturforsch 73, 215 (2018)

    Article  ADS  Google Scholar 

  36. S. Guo, L. Mei, A. Sun, Ann. Phys. 332, 38–55 (2012)

    Article  ADS  Google Scholar 

  37. O.H. El-Kalaawy, Eur. Phys. J. Plus 133, 58 (2018)

    Article  Google Scholar 

  38. S. Poornakala, A. Das, P.K. Kaw, A. Sen, Z.M. Sheng, Y. Sentoku, K. Mima, K. Nishikawa, Phys. Plasmas 9, 3802 (2002)

    Article  ADS  Google Scholar 

  39. J.N. Mohanty, K.C. Baral, Phys. Plasmas 3, 804 (1996)

    Article  ADS  Google Scholar 

  40. T.S. Gill, A. Singh, H. Kaur, N.S. Saini, P. Bala, Phys. Lett. A 361, 364 (2007)

    ADS  Google Scholar 

  41. T.S. Gill, A.S. Bains, N.S. Saini, Can. J. Phys. 87, 861 (2009)

    ADS  Google Scholar 

  42. R. Saeed, A. Shah, M. Noaman-ul-Haq, Phys. Plasmas 17, 102301 (2010)

    ADS  Google Scholar 

  43. A. Shah, Q. Haque, S. Mahmood, Astrophys. Space Sci. 335, 529 (2011)

    ADS  Google Scholar 

  44. A. Rahman, S. Ali, A.M. Mirza, A. Qamar, Phys. Plasmas 20, 042305 (2013)

    ADS  Google Scholar 

  45. B.C. Kalita, R. Das, H.K. Sarmah, Phys. Plasmas 18, 012304 (2011)

    ADS  Google Scholar 

  46. V. Muñoz et al., Nonlin. Processes Geophys 21, 217 (2014)

    ADS  Google Scholar 

  47. Y. Liang, H.B. Sang, F. Wan, C. Lv, B.S. Xie, Phys. Plasma 22, 073105 (2015)

    ADS  Google Scholar 

  48. N. Guessoum, R. Ramaty, R.E. Lingenfelter, Astrophys. J. 378, 170 (1991)

    ADS  Google Scholar 

  49. N. Iwamoto, Phys. Rev. E 47, 604 (1993)

    ADS  Google Scholar 

  50. G. Banerjee, S. Maitra, Phys. Plasmas 23, 123701 (2016)

    ADS  Google Scholar 

  51. B. Boro, A.N. Dev, B.K. Saikia, N.C. Adhikary, Plasma Phys. Rep. 46, 641 (2020)

    ADS  Google Scholar 

  52. A. Paul, A. Bandyopadhyay, K.P. Das, Plasma Phys. Rep. 45, 466 (2019)

    ADS  Google Scholar 

  53. A. Esfandyari-Kalejahi, M. Afsari-Ghazi, K. Noori, S. Irani, Phys. Plasmas 19, 082308 (2012)

    ADS  Google Scholar 

  54. N.S. Saini, B.S. Chahal, A.S. Bains, Astrophys. Space Sci. 347, 129 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Deka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dev, A.N., Deka, M.K., Kalita, R.K. et al. Effect of non-thermal electron and positron on the dust ion acoustic solitary wave in the presence of relativistic thermal magnetized ions. Eur. Phys. J. Plus 135, 843 (2020). https://doi.org/10.1140/epjp/s13360-020-00861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00861-3

Navigation