Skip to main content
Log in

Ultra-slow dynamic annealing of neutron-induced defects in n-type silicon: role of charge carriers

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Neutron bombardments with equivalent fluence (1 × 1010 cm−2) and different fluxes (2.5 × 105 cm−2 s−1 to 1 × 107 cm−2 s−1) have been performed on three kinds of bipolar devices with n-type silicon as active regions. The measured increase of base currents and input bias currents are found to decrease with increasing neutron flux, implying that the strength of the dynamic annealing of divacancy defects in n-type silicon follows a positive flux dependence. Such a flux dependence is the same as that observed in ions implantation using protons, but the evident flux sensitivity in our experiment is 4 orders of magnitude lower than that of proton bombardment, despite the similarity in the masses and energies of the two particles. The huge discrepancy of flux range is attributed to the presence of vast charge carriers in proton bombardments, which strongly accelerate the dynamic annealing of defects by enhancing the diffusion velocity of Si interstitials and dissociation rate of defect clusters. Our work would contribute to the understanding of the defect annealing processes in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2
Fig. 3

Similar content being viewed by others

References

  1. J.B. Wallace, L.B. Aji, A.A. Martin, S.J. Shin, L. Shao, S.O. Kucheyev, The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si. Sci. Rep. 7, 39754 (2017)

    Article  ADS  Google Scholar 

  2. J.B. Wallace, L.B. Aji, L. Shao, S.O. Kucheyev, Deterministic role of collision cascade density in radiation defect dynamics in Si. Phys. Rev. Lett. 120(21), 216101 (2018)

    Article  ADS  Google Scholar 

  3. J.M. Poate, J.S. Williams, “Ion Implantation and Beam Processing”, Edited by J. S. Williams and J. M. Poate (Elsevier, Amsterdam, 1984), pp. 13–23

    Book  Google Scholar 

  4. F.F. Morehead Jr., B.L. Crowder, A model for the formation of amorphous Si by ion bombardment. Radiat. Eff. 6(1), 27–32 (1970)

    Article  ADS  Google Scholar 

  5. F.H. Eisen, B. Welch, Flux and fluence dependence of disorder produced during implantation of 11 B in silicon. Radiat. Eff. 7(1–2), 143–148 (1971)

    Article  ADS  Google Scholar 

  6. G. Holmen, A. Buren, P. Hogberg, Radiation damage in Ge produced and removed by energetic Ge ions. Radiat. Eff. 24(1), 51–58 (1975)

    Article  Google Scholar 

  7. J.S. Williams, M.W. Austin, H.B. Harrison, “In Thin Film Interfaces and Interactions” Edited by J. E. E. Baglin and J. M. Poate (Electrochemical Society, Princeton, 1980), p. 137

    Google Scholar 

  8. T.E. Haynes, O.W. Holland, Comparative study of implantation-induced damage in GaAs and Ge: temperature and flux dependence. Appl. Phys. Lett. 59(4), 452–454 (1991)

    Article  ADS  Google Scholar 

  9. A. Hallén, D. Fenyö, B.U.R. Sundqvist, R.E. Johnson, B.G. Svensson, The influence of ion flux on defect production in MeV proton-irradiated silicon. J. Appl. Phys. 70(6), 3025–3030 (1991)

    ADS  Google Scholar 

  10. E. Oliviero, M.F. Beaufort, J.F. Barbot, Influence of dose rate on bubble formation by high energy He implantation in silicon. J. Appl. Phys. 90(4), 1718–1724 (2001)

    Article  ADS  Google Scholar 

  11. B.G. Svensson, C. Jagadish, J.S. Williams, Generation of point defects in crystalline silicon by MeV heavy ions: dose rate and temperature dependence. Phys. Rev. Lett. 71(12), 1860–1863 (1993)

    Article  ADS  Google Scholar 

  12. B.G. Svensson, C. Jagadish, A. Hallén, J. Lalita, Point defects in MeV ion-implanted silicon studied by deep level transient spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 106(1–4), 183–190 (1995)

    Article  ADS  Google Scholar 

  13. B.G. Svensson, C. Jagadish, A. Hallén, J. Lalita, Generation of vacancy-type point defects in single collision cascades during swift-ion bombardment of silicon. Phys. Rev. B 55(16), 10498–10507 (1997)

    Article  ADS  Google Scholar 

  14. J.R. Srour et al., Damage mechanisms in radiation-tolerant amorphous silicon solar cells. IEEE Trans. Nucl. Sci. 45(6), 2624–2631 (1998)

    Article  ADS  Google Scholar 

  15. S.R. Messenger, E.A. Burke, M.A. Xapsos, G.P. Summers, R.J. Walters, I. Jun, T. Jordan, NIEL for heavy ions: an analytical approach. IEEE Trans. Nucl. Sci. 50(6), 1919–1923 (2003)

    Article  ADS  Google Scholar 

  16. G.P. Summers, E.A. Burke, P. Shapiro, S.R. Messenger, R.J. Walters, Damage correlations in semiconductors exposed to gamma, electron and proton radiations. IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993)

    Article  ADS  Google Scholar 

  17. B. Bergmann, S. Pospisil, I. Caicedo, J. Kierstead, H. Takai, E. Frojdh, Ionizing energy depositions after fast neutron interactions in silicon. IEEE Trans. Nucl. Sci. 63(4), 2372–2378 (2016)

    Article  ADS  Google Scholar 

  18. J. Lindhard, V. Nielsen, M. Scharff, P.V. Thomsen, Integral equations governing radiation effects. Mat. Fys. Medd. Dan. Vid. Selsk 33(10), 1–42 (1963)

    MATH  Google Scholar 

  19. B.L. Gregory, H.H. Sander, Injection dependence of transient annealing in neutron-irradiated silicon devices. IEEE Trans. Nucl. Sci. 14(6), 116–126 (1967)

    Article  ADS  Google Scholar 

  20. C.E. Barnes, Thermal and injection annealing of neutron- irradiated p-type silicon between 76 and 300 K. IEEE Trans. Nucl. Sci. 16, 28 (1969)

    ADS  Google Scholar 

  21. J.W. Harrity, C.E. Mallon, Short-term annealing in p-type silicon. IEEE Trans. Nucl. Sci. 17(6), 100–104 (1970)

    ADS  Google Scholar 

  22. Y. Song, Y. Zhang, Y. Liu, J. Zhao, D.C. Meng, H. Zhou, X. Wang, M. Lan, S.H. Wei, Mechanism of synergistic effects of neutron and gamma ray radiated PNP bipolar transistors. ACS Appl. Electron. Mater. 1(4), 538–547 (2019)

    Google Scholar 

  23. Y. Song, H. Zhou, X.F. Cai, Y. Liu, P. Yang, G.H. Zhang, Y. Zhang, M. Lan, S.H. Wei, Defect dynamics model of synergistic effect in neutron-and gamma-ray-irradiated silicon NPN transistors. ACS Appl. Mater. Interfaces 12(26), 29993–29998 (2020)

    Google Scholar 

  24. L.C. Kimerling, H.M. DeAngelis, J.W. Diebold, On the role of defect charge state in the stability of point defects in silicon. Solid State Commun. 16(1), 171–174 (1975)

    ADS  Google Scholar 

  25. L.C. Kimerling, New developments in defect studies in semi-conductors. IEEE Trans. Nucl. Sci. 23(6), 1497–1505 (1976)

    ADS  Google Scholar 

  26. Y. Bar-Yam, J.D. Joannopoulos, Electronic structure and total- energy migration barriers of silicon self-interstitials. Phys. Rev. B 30(4), 1844–1852 (1984)

    ADS  Google Scholar 

  27. Y. Bar-Yam, J.D. Joannopoulos, Silicon self-interstitial migration: multiple paths and charge states. Phys. Rev. B 30(4), 2216–2218 (1984)

    ADS  Google Scholar 

  28. R. Car, P.J. Kelly, A. Oshiyama, S.T. Pantelides, Microscopic theory of atomic diffusion mechanisms in silicon. Phys. Rev. Lett. 52(20), 1814–1817 (1984)

    Article  ADS  Google Scholar 

  29. J.F. Du, Calculation of neutron spectra on typical irradiation location of the CFBR-II reactor. Nucl. Tech. 33, 183–186 (2010)

    ADS  Google Scholar 

  30. D.V. Lang, Fast capacitance transient apparatus: Application to ZnO and O centers in GaP p–n junctions. J. Appl. Phys. 45(7), 3014–3022 (1974)

    Article  ADS  Google Scholar 

  31. D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023–3032 (1974)

    Article  ADS  Google Scholar 

  32. R. Pease, W. Combs, A. Johnston, T. Carriere, C. Poivey, A. Gach, S. McClure, A compendium of recent total dose data on bipolar linear microcircuits, in IEEE Radiation Effects Data Workshop. Workshop Record. Held in conjunction with The IEEE Nuclear and Space Radiation Effects Conference. IEEE, pp. 28–37, (1996)

  33. H. Barnaby, R. Schrimpf, R. Pease, P. Cole, T. Turflinger, J. Krieg, J. Titus, D. Emily, M. Gehlhausen, S. Witczak, M.C. Maher, D. van Nort, Identification of degradation mechanisms in a bipolar linear voltage comparator through correlation of transistor and circuit response. IEEE Trans. Nucl. Sci. 46(6), 1666–1673 (1999)

    Article  ADS  Google Scholar 

  34. J.R. Srour, C.J. Marshall, P.W. Marshall, Review of displacement damage effects in silicon devices. IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003)

    Article  ADS  Google Scholar 

  35. K. Bernstein, D.J. Frank, A.E. Gattiker, W. Haensch, B.L. Ji, S.R. Nassif, E.J. Nowak, D.J. Pearson, N.J. Rohrer, High-performance CMOS variability in the 65-nm regime and beyond. IBM J Res Dev 50(4.5), 433–449 (2006)

    Article  Google Scholar 

  36. J. Zhao, Y. Song, S. Y. Hou, G. Dai, H. Zhou, Y. Liu, Y. Zhang, D. Meng, Linear correlation between pre-radiation and post-radiation input bias currents in bipolar devices. arXiv 1905.13046

  37. P. Adell, J. Boch, Dose and dose rate effects in micro- electronics: pushing the limits to extreme conditions, in IEEE Nuclear and Space Radiation Effects Conference (NSREC), Short Course (2014)

  38. S. Brotherton, P. Bradley, Defect production and lifetime control in electron and gamma-irradiated silicon. J. Appl. Phys. 53(8), 5720–5732 (1982)

    Article  ADS  Google Scholar 

  39. B.G. Svensson, M. Willander, Generation of divacancies in silicon irradiated by 2-MeV electrons: depth and dose dependence. J. Appl. Phys. 62(7), 2758 (1987)

    Article  ADS  Google Scholar 

  40. P. Pellegrino, P. Lévêque, J. Lalita, A. Hallén, C. Jagadish, B.G. Svensson, Annealing kinetics of vacancy-related defects in low-dose MeV self-ion-implanted n-type silicon. Phys. Rev. B 64(19), 195211 (2001)

    ADS  Google Scholar 

  41. E.V. Monakhov, B.S. Avset, A. Hallen, B.G. Svensson, Formation of a double acceptor center during divacancy annealing in low- doped high-purity oxygenated Si. Phys. Rev. B 65(23), 233207 (2002)

    ADS  Google Scholar 

  42. A.O. Evwaraye, E. Sun, Electron-irradiation-induced divacancy in lightly doped silicon. J. Appl. Phys. 47(9), 3776–3780 (1976)

    ADS  Google Scholar 

  43. K. Irmscher, H. Klose, K. Maass, Hydrogen-related deep levels in proton-bombarded silicon. J. Phys. C: Solid State Phys. 17(35), 6317 (1984)

    ADS  Google Scholar 

  44. B.G. Svensson, A. Hallén, B.U.R. Sundqvist, Hydrogen-related electron traps in proton-bombarded float zone silicon. Mater. Sci. Eng. B 4(1–4), 285–289 (1989)

    Google Scholar 

  45. M. Kuhnke, The long-term annealing of the cluster damage in high resistivity n-type silicon. IEEE Trans. Nucl. Sci. 49(5), 2599–2604 (2002)

    ADS  Google Scholar 

  46. X. Li, J. Yang, C. Liu et al., Characteristic of displacement defects in n–p–n transistors caused by various heavy ion irradiations. IEEE Trans. Nucl. Sci. 64(3), 976–982 (2017)

    ADS  Google Scholar 

  47. E.V. Monakhov, Y. Wongleung, A.Y. Kuznetsov et al., Ion mass effect on vacancy-related deep levels in Si induced by ion implantation. Phys.. Rev. B 65(1–9), 245201 (2002)

    ADS  Google Scholar 

  48. B.G. Svensson, B. Mohadjeri, A. Hallen et al., Divacancy acceptor levels in ion-irradiated silicon. Phys. Rev. B 43(3), 2292–2298 (1991)

    ADS  Google Scholar 

  49. D.V. Lang, L.C. Kimerling, Observation of recombination-enhanced defect reactions in semiconductors. Phys. Rev. Lett. 33(8), 489 (1974)

    ADS  Google Scholar 

  50. L.C. Kimerling, Recombination enhanced defect reactions. Solid-State Electron. 21(11–12), 1391–1401 (1978)

    Article  ADS  Google Scholar 

  51. M. J. Berger, J. S. Coursey, M. A. Zuker, J. Chang, Stopping-power and range tables for electrons, protons and helium ions. NIST, (2011). https://www.nist.gov/pml/data/star/

  52. A.N. Larsen, A. Mesli, Electron and proton irradiation of silicon. Semicond. Semimet. 91, 47–91 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Challenge Project under Grant No. TZ2016003-1 and National Natural Science Foundation of China (NSFC) under Grant Nos. 11804313 and 11404300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Y., Zhou, H. et al. Ultra-slow dynamic annealing of neutron-induced defects in n-type silicon: role of charge carriers. Eur. Phys. J. Plus 135, 827 (2020). https://doi.org/10.1140/epjp/s13360-020-00849-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00849-z

Navigation