Skip to main content
Log in

Benjamin-Ono equation: Rogue waves, generalized breathers, soliton bending, fission, and fusion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we construct various interesting localized wave structures of the Benjamin-Ono equation describing the dynamics of deep water waves. Particularly, we extract the rogue waves and generalized breather solutions with the aid of bilinear form and by applying two appropriate test functions. Our analysis reveals the control mechanism of the rogue waves with arbitrary parameters to obtain both bright- and dark-type first- and second-order rogue waves. Additionally, a generalization of the homoclinic breather method, also known as the three-wave method, is used for extracting the generalized breathers along with bright, dark, anti-dark, rational solitons. Interestingly, we have observed the manipulation of breathers along with soliton interaction, bending, fission, and fusion. Our results are discussed categorically with the aid of clear graphical demonstrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns (Springer, Berlin, 2003)

    Book  Google Scholar 

  2. R. Sakthivel, C. Chun, J. Lee, New travelling wave solutions of Burgers equation with finite transport memory. Z. für Nat. A 65, 633–640 (2010)

    Article  Google Scholar 

  3. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, Philadelphia, 2010)

    Book  Google Scholar 

  4. B. Guo, X.-F. Pang, Y.-F. Wang, N. Liu, Solitons (De Gruyter, Berlin, 2018)

    Book  Google Scholar 

  5. H. Kim, R. Sakthivel, A. Debbouche, D.F.M. Torres, Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations. Chaos Solitons Fractals 131, 109542 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Onorato, S. Resitori, F. Baronio, Rogue and Shock Waves in Nonlinear Dispersive Media (Springer, New York, 2016)

    Book  Google Scholar 

  7. N. Akhmediev, A. Ankiewicz, M. Tak, Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  ADS  Google Scholar 

  8. G. Dematteis, T. Grafke, M. Onorato, E.V. Eijnden, Experimental Evidence of Hydrodynamic Instantons: The Universal Route to Rogue Waves. Phys. Rev. X 9, 041057 (2019)

    Google Scholar 

  9. Z.Y. Yan, Financial rogue waves. Commun. Theor. Phys. 54, 947–949 (2010)

    Article  ADS  Google Scholar 

  10. W.M. Moslem, P.K. Shukla, B. Eliasson, Surface plasma rogue waves. Euro. Phys. Lett. 96, 25002 (2011)

    Article  ADS  Google Scholar 

  11. V.B. Efimov, A.N. Ganshin, G.V. Kolmakov, P.V.E. McClintock, L.P. Mezhov-Deglin, Rogue waves in supefluid helium. Eur. Phys. J. Special Topics 185, 181–193 (2010)

    Article  ADS  Google Scholar 

  12. Y.V. Bludov, V.V. Konotop, N. Akhmediev, Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Article  ADS  Google Scholar 

  13. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  14. B. Guo, L. Tian, Z. Yan, L. Ling, Y.-F. Wang, Rogue Waves: Mathematical Theory and Applications in Physics (De Gruyter, Berlin, 2017)

    Book  Google Scholar 

  15. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean: Advances in Geophysical and Environmental Mechanics and Mathematics (Springer, Berlin, 2009)

    Google Scholar 

  16. N. Akhmediev, J.M. Dudley, D.R. Solli, S.K. Turitsyn, Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)

    Article  ADS  Google Scholar 

  17. J.H. Choi, H. Kim, R. Sakthivel, Periodic and solitary wave solutions of some important physical models with variable coefficients. Waves Random Complex Media (2019). https://doi.org/10.1080/17455030.2019.1633029

  18. H. Kim, R. Sakthivel, Travelling wave solutions for time-delayed nonlinear evolution equations. Appl. Math. Lett. 23, 527–532 (2010)

    Article  MathSciNet  Google Scholar 

  19. Y. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  20. A. Calini, C.M. Schober, M. Strawn, Linear instability of the Peregrine breather: Numerical and analytical investigations. Appl. Num. Math. 141, 36–43 (2019)

    Article  MathSciNet  Google Scholar 

  21. D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. Ser. B 25, 16–43 (1983)

    Article  MathSciNet  Google Scholar 

  22. T.B. Benjamin, Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–572 (1967)

    Article  ADS  Google Scholar 

  23. H. Ono, Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 1082–1091 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.S. Fokas, M.J. Ablowitz, The inverse scattering transform for the Benjamin-Ono equation. Stud. Appl. Math. 68, 1–10 (1983)

    Article  MathSciNet  Google Scholar 

  25. K.M. Case, The N-Soliton solution of the Benjamin-Ono equation. Proc. Natl. Acad. Sci. USA 75, 3562–3563 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  26. K.M. Tamizhmani, A. Ramani, B. Grammaticos, Singularity confinement analysis of integro-differential equation of Benjamin-Ono equation. J. Phys. A: Math. Gen. 30, 1017–1022 (1997)

    Article  ADS  Google Scholar 

  27. R.I. Joseph, Multisoliton like solutions of Benjamin-Ono equation. J. Math. Phys. 181, 2251 (1977)

    Article  ADS  Google Scholar 

  28. A. Nakamura, Bäcklund transform and conservation laws of the Benjamin-Ono equation. J. Phys. Soc. Japan 47, 4 (1979)

    Google Scholar 

  29. J. Satsuma, Y. Ishimori, Periodic wave and rational soliton solutions of the Benjamin-Ono equation. J. Phys. Soc. Japan 46, 2 (1979)

    Google Scholar 

  30. Y. Li, H. Hu, Nonlocal symmetries and interaction solutions of the Benjamin-Ono equation. Appl. Math. Lett. 75, 18–23 (2018)

    Article  MathSciNet  Google Scholar 

  31. W. Liu, High-order rogue waves of the Benjamin Ono equation and the nonlocal nonlinear Schrödinger equation. Mod. Phys. Lett. B 31, 1750269 (2017)

    Article  ADS  Google Scholar 

  32. W. Tan, Z. Dai, Spatiotemporal dynamics of lump solution to the (1+1)-dimensional Benjamin-Ono equation. Nonlinear Dyn. 89, 2723–2728 (2017)

    Article  MathSciNet  Google Scholar 

  33. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  34. Y.-L. Ma, B.-Q. Li, Analytic rogue wave solutions for a generalized fourth-order Boussinesq equation in fluid mechanics. Math. Meth. Appl. Sci. 42, 39–48 (2019)

    Article  MathSciNet  Google Scholar 

  35. W. Tan, Evolution of breathers and interaction between high order lumps solutions and N-solitons \((N\rightarrow \infty )\) for breaking soliton system. Phys. Lett. A 383, 125907 (2019)

    Article  MathSciNet  Google Scholar 

  36. Y. Guo, The new exact solutions of the Fifth-Order Sawada-Kotera equation using three wave method. Appl. Math. Lett. 94, 232–237 (2019)

    Article  MathSciNet  Google Scholar 

  37. X.-B. Yang, S.-F. Tian, C.-Y. Qin, T.-T. Zhang, Characteristics of the breather, rogue waves and solitary waves in a generalized (2+1)-dimensional Boussinesq equation. Euro. Phys. Lett. 115, 10002 (2016)

    Article  Google Scholar 

  38. W. Tan, W. Zhang, J. Zhang, Evolutionary behavior of breathers and interaction solutions with M-solitons for (2+1)-dimensional KdV system. Appl. Math. Lett. 101, 106063 (2020)

    Article  MathSciNet  Google Scholar 

  39. T. Kanna, M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86, 5043 (2001)

    Article  ADS  Google Scholar 

  40. A. Gkogkou, B. Prinari, Soliton interactions in certain square matrix nonlinear Schrödinger systems. Eur. Phys. J. Plus. 135, 609 (2020)

    Article  Google Scholar 

  41. J. Chai, B. Tian, X.Y. Wu, L. Liu, Fusion and fission phenomena for the soliton interactions in a plasma. Eur. Phys. J. Plus 132, 60 (2017)

    Article  Google Scholar 

  42. K. Sakkaravarthi, T. Kanna, Dynamics of bright soliton bound states in (2+1)-dimensional multicomponent long wave-short wave system. Eur. Phys. J. Special Topics 222, 641–653 (2013)

    Article  ADS  Google Scholar 

  43. S. Li, G. Biondini, Soliton interactions and degenerate soliton complexes for the focusing nonlinear Schrödinger equation with nonzero background. Eur. Phys. J. Plus 133, 400 (2018)

    Article  Google Scholar 

  44. E.N.N.N. Aboringong, A.M. Dikandé, Soliton lattices originating from excitons interacting with high-intensity fields in finite molecular crystals. Eur. Phys. J. Plus 134, 609 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

SS is grateful to Ministry of Human Resource Development (MHRD), Government of India, and National Institute of Technology, Tiruchirappalli, India, for financial support through institute fellowship. The work of KS was supported by Department of Science and Technology - Science and Engineering Research Board (DST-SERB), Government of India, National Post-Doctoral Fellowship (File No. PDF/2016/000547). Authors thank the anonymous reviewer for providing fruitful comments for the betterment of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SS helped in conceptualization; methodology; writing—original draft, review, and editing. KS contributed to formal analysis; investigation; visualization; writing—original draft, review, and editing. KM helped in funding acquisition; resources; supervision; project administration. RS contributed to resources; supervision; project administration.

Corresponding authors

Correspondence to K. Sakkaravarthi or R. Sakthivel.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the research effort and the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sakkaravarthi, K., Murugesan, K. et al. Benjamin-Ono equation: Rogue waves, generalized breathers, soliton bending, fission, and fusion. Eur. Phys. J. Plus 135, 823 (2020). https://doi.org/10.1140/epjp/s13360-020-00808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00808-8

Navigation