Skip to main content
Log in

Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The flow and heat transfer characteristics of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet are investigated. Using similarity transformations, the governing equations are reduced to a set of differential equations. These equations have been solved utilizing nonlinear shooting method. It is found that the region of the existence of the dual solutions becomes wider for higher values of the suction parameter, non-Newtonian parameter, magnetic field parameter and volume fraction of Cu nanoparticles. Due to the increase of the suction parameter, non-Newtonian viscosity parameter and volume fraction of Cu nanoparticles, the velocity of the fluid significantly increases, whereas the temperature decreases. The results elucidated with streamlines show that the flow field can be consisted of three layers depending on the velocity ratio parameter which is defined as the ratio of velocities of the sheet and the free stream. In addition, stability analysis is carried out to determine the stable and unstable solutions of the problem. It is found that the upper solutions are stable and physically acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology (Wiley-Interscience, New Jersey, 2007)

    Google Scholar 

  2. V. Trisaksri, S. Wongwises, Critical review of heat transfer characteristics of nanofluids. Renew. Sustain. Energy Rev. 11, 512–523 (2007)

    Google Scholar 

  3. S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)

    MATH  Google Scholar 

  4. S. Akilu, K.V. Sharma, A.T. Baheta, R. Mamat, A review of thermophysical properties of water based composite nanofluids. Renew. Sustain. Energy Rev. 66, 654–678 (2016)

    Google Scholar 

  5. J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)

    Google Scholar 

  6. K.Y. Leong, K.Z.K. Ahmad, H.C. Ong, M.J. Ghazali, A. Baharum, Synthesis and thermal conductivity characteristic of hybrid nanofluids—a review. Renew. Sustain. Energy Rev. 75, 868–878 (2017)

    Google Scholar 

  7. L.S. Sundar, K.V. Sharma, M.K. Singh, A.C.M. Sousa, Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew. Sustain. Energy Rev. 68, 185–198 (2017)

    Google Scholar 

  8. J.A.R. Babu, K.K. Kumar, S.S. Rao, State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 77, 551–565 (2017)

    Google Scholar 

  9. N.A.C. Sidik, I.M. Adamu, M.M. Jamil, G.H.R. Kefayati, R. Mamat, G. Najafi, Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int. Commun. Heat Mass Transf. 78, 68–79 (2016)

    Google Scholar 

  10. G. Huminic, A. Huminic, The influence of hybrid nanofluids on the performances of elliptical tube: recent research and numerical study. Int. J. Heat Mass Transf. 129, 132–143 (2019)

    MATH  Google Scholar 

  11. G. Huminic, A. Huminic, Hybrid nanofluids for heat transfer applications–a state-of-the-art review. Int. J. Heat Mass Transf. 125, 82–103 (2018)

    MATH  Google Scholar 

  12. C.Y. Wang, Stagnation flow towards a shrinking sheet. Int. J. Non Linear Mech. 43, 377–382 (2008)

    ADS  Google Scholar 

  13. Y.Y. Lok, N. Amin, I. Pop, Non-orthogonal stagnation point flow towards a stretching sheet. Int. J. Nonlin. Mech. 41, 622–627 (2006)

    Google Scholar 

  14. K. Bhattacharyya, Dual solutions in unsteady stagnation-point flow over a shrinking sheet. Chin. Phys. Lett. 28, 084702 (2011)

    Google Scholar 

  15. K. Bhattacharyya, Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet. Int. Comm. Heat Mass Transf. 38, 917–922 (2011)

    Google Scholar 

  16. I. Waini, A. Ishak, I. Pop, Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chin. J. Phys. (2019). https://doi.org/10.1016/j.cjph.2019.12.015

    Article  Google Scholar 

  17. S.S.U. Devi, S.P.A. Devi, Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. J. Nigerian Mathem. Soc. 36, 419–433 (2017)

    Google Scholar 

  18. S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 94, 490–496 (2016)

    ADS  Google Scholar 

  19. T. Hayat, S. Nadeem, Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Res. Phys. 7, 2317–2324 (2017)

    Google Scholar 

  20. A.V. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    MATH  Google Scholar 

  21. L.A. Lund, Z. Omara, I. Khan, A.H. Seikh, E.-S.M. Sherif, K.S. Nisar, Stability analysis and multiple solution of Cu–Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. J. Mater. Res. Technol. 9(1), 421–432 (2020)

    Google Scholar 

  22. T. Hayat, S. Nadeem, A.U. Khan, Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. Eur. Phys. J. E 41, 75 (2018)

    Google Scholar 

  23. I. Waini, A. Ishak, I. Pop, Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. Int. J. Num. Meth. Heat Fluid Flow 29(9), 3110–3127 (2019)

    Google Scholar 

  24. N. Bachok, A. Ishak, I. Pop, Flow and heat transfer characteristics on a moving plate in a nanofluid. Int. J. Heat Mass Transf. 55, 642–648 (2012)

    MATH  Google Scholar 

  25. S. Ahmad, A.M. Rohni, I. Pop, Blasius and Sakiadis problems in nanofluids. Acta Mech. 218, 195–204 (2011)

    MATH  Google Scholar 

  26. A.M. Rohni, S. Ahmad, I. Pop, Boundary layer flow over a moving surface in a nanofluid beneath a uniform free stream. Int. J. Numer. Meth. Heat Fluid Flow 21, 828–846 (2011)

    Google Scholar 

  27. A.M. Rohni, S. Ahmad, A.I. Ismail, I. Pop, Flow and heat transfer over an unsteady shrinking sheet with suction in a nanofluid using Buongiorno’s model. Int. Commun. Heat Mass Transf. 43, 75–80 (2013)

    Google Scholar 

  28. A.M. Rohni, S. Ahmad, I. Pop, Flow and heat transfer over an unsteady shrinking sheet with suction in nanofluids. Int. J. Heat Mass Transfer 55, 1888–1895 (2012)

    Google Scholar 

  29. I. Waini, A. Ishak, I. Pop, Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 136, 288–297 (2019)

    Google Scholar 

  30. K. Vajravelu, D. Rollins, Hydromagnetic flow of a second grade fluid over a stretching sheet. Appl. Math. Comput. 148, 783–791 (2004)

    MathSciNet  MATH  Google Scholar 

  31. M. Sajid, T. Hayat, S. Asghar, Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet. Int. J. Heat Mass Transf. 50, 1723–1736 (2007)

    MATH  Google Scholar 

  32. A. Keçebaş, M. Yürüsoy, Similarity solutions of unsteady boundary layer equations of a special third grade fluid. Int. J. Eng. Sci. 44, 721–729 (2006)

    MathSciNet  MATH  Google Scholar 

  33. S. Abbasbandy, T. Hayat, On series solution for unsteady boundary layer equations in a special third grade fluid. Commun. Nonlinar Sci. Numer. Simul. 16, 3140–3146 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  34. K. Naganthran, R. Nazar, I. Pop, Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet. Sci. Rep. 6, 24632 (2016)

    ADS  Google Scholar 

  35. K. Vajravelu, T. Roper, Flow and heat transfer in a second grade fluid over a stretching sheet. Int. J. Nonlinear Mech. 34, 1031–1036 (1999)

    MATH  Google Scholar 

  36. T. Hayat, I. Ullah, T. Muhammad, A. Alsaedi, Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface. J. Mol. Liquids 220, 1004–1012 (2016)

    Google Scholar 

  37. T. Hayat, A. Aziz, T. Muhammad, B. Ahmad, On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet. J. Magn. Magn. Mater. 408, 99–106 (2016)

    ADS  Google Scholar 

  38. M. Ramzan, M. Bilal, U. Farooq, J.D. Chung, Mixed convective radiative flow of second grade nanofluid with convective boundary conditions: an optimal solution. Res. Phys. 6, 796–804 (2016)

    Google Scholar 

  39. M. Khan, M.U. Rahman, Flow and heat transfer to modified second grade fluid over a non-linear stretching sheet. AIP Adv. 5, 087157 (2015)

    ADS  Google Scholar 

  40. A.U. Awan, S. Abid, N. Ullah, S. Nadeem, Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface. Res. Phys. 18, 103233 (2020)

    Google Scholar 

  41. M. Imtiaz, F. Mabood, T. Hayat, A. Alsaedi, Homogeneous-heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. Int. J. Heat Mass Transf. 145, 118781 (2019)

    Google Scholar 

  42. R.L. Fosdick, K.R. Rajagopal, Anomalous features in the model of “second order fluids”. Arch. Rational Mech. Anal. 70, 145–152 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  43. J.H. Merkin, On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20, 171–179 (1985)

    MATH  Google Scholar 

  44. P.D. Weidman, D.G. Kubittschek, A.M.J. Davis, The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44, 730–737 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nepal Chandra Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, N.C., Pop, I. Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet. Eur. Phys. J. Plus 135, 768 (2020). https://doi.org/10.1140/epjp/s13360-020-00788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00788-9

Navigation