Skip to main content
Log in

Bifurcations and chaos dynamics of a hyperjerk system with antimonotonicity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the bifurcations and chaos dynamics of a hyperjerk system with antimonotonicity are investigated via the analytical methods and numerical calculations. We discuss the local stabilities of equilibrium points and its bifurcations depending on parameters. The predicted bifurcations of periodic orbits including flip bifurcation, fold bifurcation and symmetry-breaking bifurcation are investigated. The accurate relations between parameters are established to identify the type of bifurcation appearing in system efficiently. Such simple system has very abundant dynamical behaviors, including period-doubling cascades route to chaos, intermittency regime, antimonotonicity and boundary crisis. The coexisting dynamics is confirmed effectively by using basins of attraction, bifurcation diagram, Lyapunov exponent spectrum and phase portraits. The research reveals the richness and complexity of potential stable states to which this chaotic hyperjerk system can evolve and offers flexibility in realization of various applications including secure communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    ADS  Google Scholar 

  2. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  3. N.V. Kuznetsov, G.A. Leonov, V.I. Vagaitsev, IFAC Proceedings 4, 29 (2010)

    Google Scholar 

  4. D. López-Mancilla, C. Cruz-Hernández, Nonlinear Dyn. Sys. Theor. 5, 141 (2005)

    Google Scholar 

  5. A. Akgul, C. Li, I. Pehlivan, J. Circuits Syst. Comput. 26, 512 (2017)

    Google Scholar 

  6. Q. Lai, B. Norouzi, F. Liu, Chaos Soliton Fract. 230, 114 (2018)

    Google Scholar 

  7. Z.G. Shi, S. Qiao, K.S. Chen, Prog. Electromagn. Res. 77, 1 (2007)

    Google Scholar 

  8. X. Wang, S. Vaidyanathan, C. Volos, V.-T. Pham, T. Kapitaniak, Nonlinear Dyn. 89, 1673 (2017)

    Google Scholar 

  9. S. Vaidyanathan, A. Akgul, S. Kacar, U. Cavusoglu, Eur. Phys. J. Plus 133, 46 (2018)

    Google Scholar 

  10. G.M. Mahmoud, A.A. Farghaly, T.M. Abed-Elhameed, S.A. Aly, A.A. Arafa, Eur. Phys. J. Plus 135, 32 (2020)

    Google Scholar 

  11. M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear Algebra (Academic Press, New York, 1974)

    MATH  Google Scholar 

  12. O.E. Rössler, Phys. Lett. A 71, 155 (1979)

    ADS  MathSciNet  Google Scholar 

  13. L.O. Chua, M. Itoh, K. Ljupco, K. Eckert, J. Circuit Syst. Comp. 3, 93 (1993)

    Google Scholar 

  14. J.C. Sprott, Phys. Rev. E. 50, 647 (1994)

    ADS  MathSciNet  Google Scholar 

  15. J.C. Sprott, Am. J. Phys. 65, 537 (1997)

    ADS  Google Scholar 

  16. G.R. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999)

    Google Scholar 

  17. J.H. Lü, G.R. Chen, Int. J. Bifurc. Chaos 12, 659 (2002)

    Google Scholar 

  18. K.E. Chlouverakis, J.C. Sprott, Chaos Soliton Fract. 28, 739 (2006)

    ADS  Google Scholar 

  19. F.Y. Dalkiran, J.C. Sprott, Int. J. Bifurc. Chaos 26, 1650189 (2016)

    Google Scholar 

  20. S.J. Linz, Chaos Soliton Fract. 37, 741 (2008)

    ADS  Google Scholar 

  21. B. Bao, X. Zou, Z. Liu, F. Hu, Int. J. Bifurc. Chaos 23, 1350 (2013)

    Google Scholar 

  22. G.D. Leutcho, J. Kengne, L. Kamdjeu Kengne, Chaos Soliton Fract. 107, 67 (2018)

    ADS  Google Scholar 

  23. A. Irfan, S. Banlue, S. Wimol, IEEE Access 6, 35449 (2018)

    Google Scholar 

  24. V.K. Tamba, E.R. Feudjio, F.K. Tagne, J.N. Fankam, H.B. Fotsin, Eur. Phys. J. ST 229, 1189 (2020)

    Google Scholar 

  25. N.M. Krylov, N.N. Bogoliubov, Introduction to Nonlinear Mechanics (Princeton University Press, New Jersey, 1943)

    MATH  Google Scholar 

  26. M. Urabe, Arch. Ration. Mech. An. 20, 120 (1965)

    Google Scholar 

  27. M. Basso, R. Genesio, A. Tesi, Nonlinear Dyn. 13, 339 (1997)

    Google Scholar 

  28. M. Berci, G. Dimitriadis, J. Fluid Struct. 80, 132 (2018)

    ADS  Google Scholar 

  29. T. Naderi, D. Materassi, G. Innocenti, R. Genesio, IEEE Trans. Autom. Control 64, 670 (2019)

    Google Scholar 

  30. S.H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, 1994)

    Google Scholar 

  31. B. Hassard, N. Kazarinoff, Y. Wan, Theory and Application of Hopf Bifurcation (Cambridge University Press, Cambridge, 1982)

    MATH  Google Scholar 

  32. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field (Springer, New York, 1983)

    MATH  Google Scholar 

  33. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edn. (Springer-Verlag, New York, 1997), pp. 91–104

    Google Scholar 

  34. R. Genesio, A. Tesi, Automatica 28, 531 (1992)

    Google Scholar 

  35. H.K. Khalil, Nonlinear Systems, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1996)

    Google Scholar 

  36. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Phys. Rev. D 16, 285 (1985)

    Google Scholar 

  37. L. Kocarev, K.S. Halle, K. Eckert, L.O. Chua, Int. J. Bifurc. Chaos 3, 1051 (1993)

    Google Scholar 

  38. K. Rajagopal, S. Jafari, V.T. Pham, Z.C. Wei, D. Premraj, K. Thamilmaran, A. Karthikeyan, Int. J. Bifurc. Chaos 29, 1950032 (2019)

    Google Scholar 

  39. L.K. Kengne, H.T. Tagne, J.R. Mboupda-Pone, J. Kengne, Eur. Phys. J. Plus 135, 340 (2020)

    Google Scholar 

  40. M. Dhamala, Y.C. Lai, Phys. Rev. E 59, 1646 (1999)

    ADS  Google Scholar 

  41. P. Vadasz, Appl. Math. Lett. 23, 503 (2010)

    MathSciNet  Google Scholar 

  42. M. Yoshiharu, K. Hirokazu, H. Daisuke, N. Shuji, J. Solid State Electrochem. 19, 3253 (2015)

    Google Scholar 

  43. T. Tel, Chaos 25, 097619 (2015)

    ADS  MathSciNet  Google Scholar 

  44. H. Bao, N. Wang, B. Bao, M. Chen, Commun. Nonlinear Sci. 57, 264 (2018)

    Google Scholar 

  45. B.R. Xu, G.Y. Wang, H.C.I. Herbert, S.M. Yu, F. Yuan, Nonlinear Dyn. 96, 765 (2019)

    Google Scholar 

  46. M. Scheffer et al., Nature 461, 53 (2009)

    ADS  Google Scholar 

  47. Z.C. Wei, I. Moroz, J.C. Sprott, A. Akgul, W. Zhang, Chaos 27, 033101 (2017)

    ADS  MathSciNet  Google Scholar 

  48. H.P. Wena, S.M. Yu, Eur. Phys. J. Plus 134, 337 (2019)

    Google Scholar 

Download references

Acknowledgements

The research project is supported by National Natural Science Foundation of China (Grant Nos. 11772007, 11372014, 11832002, 11290152) and also supported by Beijing Natural Science Foundation (Grant Nos. 1172002, Z180005), the International Science and Technology Cooperation Program of China (Grant No. 2014DFR61080), Beijing Key Laboratory on Nonlinear Vibrations and Strength of Mechanical Structures, College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Li, J. & Zhang, W. Bifurcations and chaos dynamics of a hyperjerk system with antimonotonicity. Eur. Phys. J. Plus 135, 767 (2020). https://doi.org/10.1140/epjp/s13360-020-00786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00786-x

Navigation