Skip to main content
Log in

Charged strange star with Krori–Barua potential in f(RT) gravity admitting Chaplygin equation of state

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In present paper, a new compact star model in f(RT) gravity is obtained, where R and T denote the Ricci scalar and the trace of energy–momentum tensor \(T_{\mu \nu }\), respectively. To develop the model, we consider the spherically symmetric spacetime along with anisotropic fluid distribution in the presence of electric field with \(f(R,T)=R+2 \gamma T\), where \(\gamma \) is a small positive constant. We have used the Chaplygin equation of state to explore the stellar model. The field equations for f(RT) gravity have been solved by employing the Krori–Barua ansatz already reported in the literature [J. Phys. A, Math. Gen. 8:508, 1975]. The exterior spacetime is described by Reissner–Nordström line element for smooth matching at the boundary. It is worthwhile to mention here that the values of all the constants involved with this model have been calculated for the strange stars 4U 1538-52 for different values of \(\gamma \) with the help of matching conditions. The acceptability of the model is discussed in detail both analytically and graphically by studying the physical attributes of matter density, pressures, anisotropy factor, stability, etc. We have also obtained the numerical values in tabular form for central density, surface density, central pressure and central adiabatic index for different values of \(\gamma \). The solutions of the field equations in Einstein gravity can be regained by simply putting \(\gamma =0\) to our solution. Moreover, the proposed model is shown to be physically admissible and corroborate with experimental observations on strange star candidates such as 4U 1538-52.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. 1915, 315 (1915)

    Google Scholar 

  2. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. 1915, 778 (1915)

    Google Scholar 

  3. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. 1915, 831 (1915)

    Google Scholar 

  4. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. 1915, 844 (1915)

    Google Scholar 

  5. K. Schwarzschild, Sitzungsber. Deut. Akad. Wiss. Berlin, Kl. Math. Phys. 24, 424 (1916)

    Google Scholar 

  6. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    ADS  Google Scholar 

  7. R. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972)

    ADS  Google Scholar 

  8. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    ADS  Google Scholar 

  9. M.K. Mak, T. Harko, Proc. R. Soc. Lond. A 459, 393 (2003)

    ADS  Google Scholar 

  10. M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998)

    ADS  Google Scholar 

  11. F. Rahaman, S. Ray, A.K. Jafry, K. Chakraborty, Phys. Rev. D 82, 104055 (2010)

    ADS  Google Scholar 

  12. M.C. Durgapal, J. Phys. A Math. Gen. 15, 2637 (1982)

    ADS  MathSciNet  Google Scholar 

  13. W.B. Bonnor, MNRAS 29, 443–446 (1965)

    ADS  MathSciNet  Google Scholar 

  14. R. Stettner, Ann. Phys. 80, 212 (1973)

    ADS  Google Scholar 

  15. F. de Felice, Y. Yu, J. Fang, Mon. Not. R. Astron. Soc. 277, L17–L19 (1995)

    ADS  Google Scholar 

  16. J.D. Bekenstein, Phys. Rev. D 4, 2185 (1971)

    ADS  Google Scholar 

  17. C.R. Ghezzi, Phys. Rev. D 72, 104017 (2005)

    ADS  Google Scholar 

  18. A.K. Raychaudhuri, Ann. Inst. Henri Poincare 22, 229 (1975)

    ADS  Google Scholar 

  19. A. Di Prisco, L. Herrera, G. Le Denmat, M.A.H. MacCallum, N.O. Santos, Phys. Rev. D 76, 064017 (2007)

    ADS  Google Scholar 

  20. A. Kouretsis, C.G. Tsagas, Phys. Rev. D 82, 124053 (2010)

    ADS  Google Scholar 

  21. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  22. M.J.S. Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012)

    ADS  MathSciNet  Google Scholar 

  23. Z. Yousaf et al., Eur. Phys. J. C 78, 307 (2018)

    ADS  Google Scholar 

  24. P.H.R.S. Moraes, J.D.V. Arbañil, M. Malheiro, J. Cosmol. Astropart. Phys. 06, 005 (2016)

    ADS  Google Scholar 

  25. A. Das, F. Rahaman, B.K. Guha, S. Ray, Eur. Phys. J. C 76, 654 (2016)

    ADS  Google Scholar 

  26. A. Das, S. Ghosh, B.K. Guha, S. Das, F. Rahaman, S. Ray, Phys. Rev. D 95, 124011 (2017)

    ADS  MathSciNet  Google Scholar 

  27. M. Jamil, D. Momeni, M. Raza, R. Myrzakulov, Eur. Phys. J. C 72, 1999 (2012)

    ADS  Google Scholar 

  28. P.K. Sahoo, S.K. Sahu, A. Nath, Eur. Phys. J. Plus 131, 18 (2016)

    Google Scholar 

  29. M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 81, 114005 (2012)

    ADS  Google Scholar 

  30. S.K. Sahu, S.K.Tripathyy, P.K. Sahooz and A. Nath. arXiv:1611.03476v1 [gr-qc]

  31. P.K. Sahoo, M. Sivakumar, Astrophys. Space Sci. 357, 60 (2015)

    ADS  Google Scholar 

  32. P.K. Sahoo, B. Mishra, P. Sahoo, S.K.J. Pacif, Eur. Phys. J. Plus 131, 333 (2016)

    Google Scholar 

  33. P.K. Sahoo, Fortschr. Phys. 64, 414 (2016)

    MathSciNet  Google Scholar 

  34. G.K. Singh, B.K. Bishi, P.K. Sahoo, Chin. J. Phys. 54, 244 (2016)

    Google Scholar 

  35. G.K. Singh, B.K. Bishi, P.K. Sahoo, Int. J. Geom. Methods Phys. 13, 1650058 (2016)

    Google Scholar 

  36. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1998)

    MATH  Google Scholar 

  37. T. Koivisto, Class. Quantum Gravity 23, 4289 (2006)

    ADS  Google Scholar 

  38. J. Barrientos, G.F. Rubilar, Phys. Rev. D 90, 028501 (2014)

    ADS  Google Scholar 

  39. T. Harko, F.S.N. Lobo. arXiv:1008.4193v2

  40. M. Sharif, A. Siddiqa, Eur. Phys. J. Plus 132, 529 (2017)

    Google Scholar 

  41. J.C. Fabris, S.V.B. Goncalves, P.E. de Souza, Gen. Relativ. Gravit. 34, 53 (2002)

    Google Scholar 

  42. N. Bilic, G.B. Tupper, R.D. Viollier, Phys. Lett. B 535, 17 (2002)

    ADS  Google Scholar 

  43. V.V. Burdyuzha, Astron. Rep. 53, 381 (2009)

    ADS  Google Scholar 

  44. A. Kamenshchik et al., Phys. Lett. B 487, 7 (2000)

    ADS  MathSciNet  Google Scholar 

  45. M. Bento, O. Bertolami, N. Santos, A. Sen, Phys. Rev. D 71, 063501 (2005)

    ADS  Google Scholar 

  46. P.T. Silva, O. Bertolami, Astron. Astrophys. 599, 829 (2003)

    ADS  Google Scholar 

  47. A. Dev, D. Jain, J.S. Alcaniz, Astron. Astrophys. 417, 847 (2004)

    ADS  Google Scholar 

  48. O. Bertolami and P.T. Silva, astro-ph/0507192

  49. M. Bento, O. Bertolami, N. Santos, A. Sen, Phys. Lett. B 575, 172 (2003)

    ADS  Google Scholar 

  50. J. Mubasher, M.U. Farooq, M.A. Rashid, Eur. Phys. J. C 59, 907–912 (2009)

    ADS  Google Scholar 

  51. H. Reissner, Ann. Phys. 50, 106 (1916)

    Google Scholar 

  52. G. Nordström, Proc. K. Ned. Akad. Wet. 20, 1238 (1918)

    Google Scholar 

  53. G.J.G. Junevicus, J. Phys. A Math. Gen. 9, 2069 (1976)

    ADS  Google Scholar 

  54. S.D. Maharaja, J.M. Sunzub, S. Ray, Eur. Phys. J. Plus 129, 3 (2014)

    Google Scholar 

  55. L. Herrera, Phys. Lett. A 165, 206–210 (1992)

    ADS  Google Scholar 

  56. A. DiPrisco, E. Fuenmayor, L. Herrera, V. Varela, Phys. Lett. A 195, 23–6 (1994)

    ADS  MathSciNet  Google Scholar 

  57. A. DiPrisco, L. Herrera, V. Varela, Gen. Relat. Gravit. 29, 1239–56 (1997)

    ADS  Google Scholar 

  58. S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

    ADS  MathSciNet  Google Scholar 

  59. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)

    ADS  Google Scholar 

  60. H. Bondi, Proc. R. Soc. Lond. A 281, 39 (1964)

    ADS  MathSciNet  Google Scholar 

  61. M. Gasperini, G. Veneziano, Phys. Rep. 373, 1 (2003)

    ADS  MathSciNet  Google Scholar 

  62. Piyali Bhar, Farook Rahaman, Tuhina Manna, Ayan Banerjee, Eur. Phys. J. C 76, 708 (2016)

    ADS  Google Scholar 

  63. M. Sharif, A. Waseem, Eur. Phys. J. Plus 131, 190 (2016)

    Google Scholar 

  64. M.H. Murad, S. Fatema, Eur. Phys. J. C 75, 533 (2015)

    ADS  Google Scholar 

  65. A. Giuliani, T. Rothman, Gen. Relat. Gravit. (2007). https://doi.org/10.1007/s10714-007-0539-7

    Article  Google Scholar 

  66. H. Andréasson, Commun. Math. Phys. 288, 715 (2009)

    ADS  MathSciNet  Google Scholar 

  67. H.A. Buchdahl, General relativistic fluid spheres. Phys. Rev. 116, 1027–1034 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  68. C.G. Böhmer, T. Harko, Gen. Relativ. Gravit. 39, 757 (2007). https://doi.org/10.1007/s10714-007-0417-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PB is thankful to IUCAA, government of India for providing visiting associateship, the author is also thankful to Dr. Pramit Rej, Assistant Professor, Sarat Centenary College, Dhaniakhali, Hooghly for helping in proof correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyali Bhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhar, P. Charged strange star with Krori–Barua potential in f(RT) gravity admitting Chaplygin equation of state. Eur. Phys. J. Plus 135, 757 (2020). https://doi.org/10.1140/epjp/s13360-020-00755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00755-4

Navigation