Skip to main content
Log in

An impact of La doping content on key physical properties of PbS spherical nanoparticles facilely synthesized via low temperature chemical route

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Herein, we are reporting a facile chemical process to attain high-grade PbS spherical nanoparticles with diverse La doping contents at low temperature and named it as La@PbS SNPs. All the prepared La@PbS SNPs samples are of single-cubic phase with good crystalline nature confirmed from XRD and Rietveld refinement. Along with lattice constants several other structure-related parameters like size, dislocations, strain, stacking fault, density and specific surface area were calculated. EDX and SEM-e-mapping analyses confirm the presence of La in PbS with homogeneous distribution throughout the samples. For morphological investigation FESEM was employed, which approved the synthesis of SNPs of low dimensions at all La contents. FT-Raman analysis shows characteristics vibrational modes related to cubic-PbS and that is in good accordance with XRD outcomes. Energy gap values were determined through Kubelka–Munk procedure and noticed to lie between 1.01 to 1.103 eV (\( \Delta E = 0.093 \;{\text{eV}}) \), this shows a very minute shift in energy gap with La doping in PbS. Dielectric constant (\( \varepsilon ' \)), loss tangent, dielectric loss and impedance values were assessed and stable values of \( \varepsilon ' \) were noticed in 20–50 range and 5.0 wt % La@PbS SNPs possesses highest value. The ac electrical conductivity analysis revealed enhancement with La content in PbS. The correlated barrier hoping mechanism was involved in the prepared La@PbS SNPs. Furthermore, the DC electrical properties were studied and discussed the impact of La content.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Zhao, T.P. Osedach, L.Y. Chang, S.M. Geyer, D. Wanger, M.T. Binda, A.C. Arango, M.G. Bawendi, V. Bulovic, Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4, 3743–3752 (2010)

    Google Scholar 

  2. F. Göde, S. Ünlü, Synthesis and characterization of CdS window layers for PbS thin film solar cells. Mater. Sci. Semicond. Process. 90, 92–100 (2019)

    Google Scholar 

  3. S. Mohd, I.M. Ashraf, S. AlFaify, Surface area, optical and electrical studies on PbS nanosheets for visible light photo-detector application. Phys. Scr. 94, 025801 (2019)

    ADS  Google Scholar 

  4. P. Gadenne, Y. Yagil, G. Deutscher, Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition. J. Appl. Phys. 66, 3019–3025 (1989)

    ADS  Google Scholar 

  5. P. Nair, V. Garcia, A. Hernandez, M. Nair, Photoaccelerated chemical deposition of PbS thin films: novel applications in decorative coatings and imaging techniques. J. Phys. D Appl. Phys. 24, 1466 (1991)

    ADS  Google Scholar 

  6. I. Pop, C. Nascu, V. Ionescu, E. Indrea, I. Bratu, Structural and optical properties of PbS thin films obtained by chemical deposition. Thin Solid Films 307, 240–244 (1997)

    ADS  Google Scholar 

  7. P. Nair, O. Gomezdaza, M. Nair, Metal sulphide thin film photography with lead sulphide thin films. Adv. Mater. Opt. Electron. 1, 139–145 (1992)

    Google Scholar 

  8. R.S. Allgaier, W.W. Scanlon, Mobility of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2 K. Phys. Rev. 111, 1029 (1958)

    ADS  Google Scholar 

  9. I. Kang, F.W. Wise, Electronic structure and optical properties of PbS and PbSe quantum dots. JOSA B 14, 1632–1646 (1997)

    ADS  Google Scholar 

  10. X. He, I.N. Demchenko, W.C. Stolte, A. van Buuren, H. Liang, Synthesis and transformation of Zn-doped PbS quantum dots. J. Phys. Chem. C 116, 22001–22008 (2012)

    Google Scholar 

  11. Z.Q. Mamiyev, N.O. Balayeva, Preparation and optical studies of PbS nanoparticles. Opt. Mater. 46, 522–525 (2015)

    ADS  Google Scholar 

  12. D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshrestha, Characterization of PbS nanoparticles synthesized by chemical bath deposition. J. Alloy. Compd. 484, 463–466 (2009)

    Google Scholar 

  13. M. Shkir, S. AlFaify, A facile low-temperature synthesis of nanosheets assembled PbS microflowers and their structural, morphological, optical, photoluminescence, dielectric and electrical studies. Mater. Res. Express 6, 105013 (2019)

    ADS  Google Scholar 

  14. M. Shkir, M.T. Khan, A. Khan, A.M. El-Toni, A. Aldalbahi, S. AlFaify, Facilely synthesized Cu:PbS nanoparticles and their structural, morphological, optical, dielectric and electrical studies for optoelectronic applications. Mater. Sci. Semicond. Process. 96, 16–23 (2019)

    Google Scholar 

  15. K.V. Chandekar, M. Shkir, A. Khan, S. AlFaify, An in-depth study on physical properties of facilely synthesized Dy@CdS NPs through microwave route for optoelectronic technology. Mater. Sci. Semicond. Process. 118, 105184 (2020)

    Google Scholar 

  16. M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3 + doping. Sci. Rep. 7, 16091 (2017)

    ADS  Google Scholar 

  17. T. Cho, S. Park, M. Yoshio, T. Hirai, Y. Hideshima, Effect of synthesis condition on the structural and electrochemical properties of Li [Ni1/3Mn1/3Co1/3] O2 prepared by carbonate co-precipitation method. J. Power Sources 142, 306–312 (2005)

    ADS  Google Scholar 

  18. E. Golyeva, D. Tolstikova, I. Kolesnikov, M. Mikhailov, Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4: Eu3 + nanopowders. J. Rare Earths 33, 129–134 (2015)

    Google Scholar 

  19. L. Xie, T. Zhang, Y. Zhao, Stabilizing the MAPbI3 perovksite via the in situ formed lead sulfide layer for efficient and robust solar cells. J. Energy Chem. 47, 62–65 (2020)

    Google Scholar 

  20. D. Berhanu, K. Govender, D. Smyth-Boyle, M. Archbold, D.P. Halliday, P. O’Brien, A novel soft hydrothermal (SHY) route to crystalline PbS and CdS nanoparticles exhibiting diverse morphologies. Chem. Commun. 45, 4709–4711 (2006)

    Google Scholar 

  21. Y.J. Yang, A novel electrochemical preparation of PbS nanoparticles. Mater. Sci. Eng., B 131, 200–202 (2006)

    Google Scholar 

  22. Z. Tshemese, M.D. Khan, S. Mlowe, N. Revaprasadu, Synthesis and characterization of PbS nanoparticles in an ionic liquid using single and dual source precursors. Mater. Sci. Eng., B 227, 116–121 (2018)

    Google Scholar 

  23. D.C. Onwudiwe, Microwave-assisted synthesis of PbS nanostructures. Heliyon 5, e01413 (2019)

    Google Scholar 

  24. L.D. Nyamen, N. Revaprasadu, P.T. Ndifon, Low temperature synthesis of PbS and CdS nanoparticles in olive oil. Mater. Sci. Semicond. Process. 27, 191–196 (2014)

    Google Scholar 

  25. M. Salavati-Niasari, D. Ghanbari, Hydrothermal synthesis of star-like and dendritic PbS nanoparticles from new precursors. Particuology 10, 628–633 (2012)

    Google Scholar 

  26. U. Priyanka, A.G. KM, M. Elisha, N. Nitish, Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int. Biodeterior. Biodegrad. 119, 78–86 (2017)

    Google Scholar 

  27. V.P. Jyothilakshmi, N.M. Bhabhina, M.V. Dharsana, S. Swaminathan, Wet chemical synthesis of lead sulfide nanoparticles and its application as light harvester in photovoltaic cell. Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.9208

    Article  Google Scholar 

  28. M. Shkir, A. Khan, M. Hamdy, S. AlFaify, A facile microwave synthesis of PbS: Sr nanoparticles and their key structural, morphological, optical, photoluminescence, dielectric and electrical studies for optoelectronics. Mater. Res. Express 6, 1250e1256 (2020)

    Google Scholar 

  29. M. Shkir, I.S. Yahia, S. AlFaify, A facilely one pot low temperature synthesis of novel Pt doped PbS nanopowders and their characterizations for optoelectronic applications. J. Mol. Struct. 1192, 68–75 (2019)

    ADS  Google Scholar 

  30. M. Shkir, M.T. Khan, I.M. Ashraf, S. AlFaify, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, A. Khan, Rapid microwave-assisted synthesis of Ag-doped PbS nanoparticles for optoelectronic applications. Ceram. Int. 45, 21975–21985 (2019)

    Google Scholar 

  31. B. Suresh, S. Ramachandran, G. Shanmugam, Third-order optical nonlinearity of Ce-doped PbS/PEG self-standing nanocomposite films. J. Mater. Sci.: Mater. Electron. 31, 2997–3004 (2020)

    Google Scholar 

  32. B. Ramezanpour, H.M. Chenari, H. Kangarlou, Metamaterial Mn-doped PbS nanoparticles: synthesis, size-strain line-broadening analysis and Kramers-Kronig study. Ceram. Int. 43, 12420–12426 (2017)

    Google Scholar 

  33. M. Liu, Q. Zhan, W. Li, R. Li, Q. He, Y. Wang, Effect of Zn doping concentration on optical band gap of PbS thin films. J. Alloy. Compd. 792, 1000–1007 (2019)

    Google Scholar 

  34. S. Sharma, A.V.D. Reddy, N. Jayarambabu, N.V.M. Kumar, A. Saineetha, S. Kailasa, K.V. Rao, Micro-structural, optical and vibrational spectra analysis of Lead sulphide, Cadmium doped PbS and Strontium doped PbS nano-structured thin films synthesized through Successive Ionic Layer Adsorption and Reaction technique for solar cell and infrared detector sensor applications. Mater. Today Proc. 26, 162–171 (2020)

    Google Scholar 

  35. R. Kripal, C. Rudowicz, U.M. Tripathi, Spectroscopic Study of Mn2 + Doped PbS Nanocrystals. Appl. Magn. Reson. 50, 785–795 (2019)

    Google Scholar 

  36. Y. Zhao, W. Li, PbS quantum dots band gap tuning via Eu doping. Mater. Res. Express 6, 115908 (2019)

    ADS  Google Scholar 

  37. K. Paulraj, S. Ramaswamy, M. Shkir, I.S. Yahia, M.S. Hamdy, S. AlFaify, Analysis of neodymium rare earth element doping in PbS films for opto-electronics applications. J. Mater. Sci.: Mater. Electron. 31, 1817–1827 (2020)

    Google Scholar 

  38. K.V. Chandekar, M. Shkir, A. Khan, B.M. Al-Shehri, M.S. Hamdy, S. AlFaify, M.A. El-Toni, A. Aldalbahi, A.A. Ansari, H. Ghaithan, A facile one-pot flash combustion synthesis of La@ZnO nanoparticles and their characterizations for optoelectronic and photocatalysis applications. J. Photochem. Photobiol., A 395, 112465 (2020)

    Google Scholar 

  39. M. Shkir, V. Ganesh, I.S. Yahia, S. AlFaify, Microwave-synthesis of La3 + doped PbI2 nanosheets (NSs) and their characterizations for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 29, 15838–15846 (2018)

    Google Scholar 

  40. Z. Xinle, M. Zhimei, X. Zuojiang, C. Guang, Preparation and characterization on nano-sized barium titanate powder doped with lanthanum by sol-gel process. J. Rare Earths 24, 82–85 (2006)

    Google Scholar 

  41. P. Rajagopalan, P. Jakhar, I.A. Palani, V. Singh, S.J. Kim, Elucidations on the effect of lanthanum doping in ZnO towards enhanced performance nanogenerators. Int. J. Precis. Eng. Manuf.-Green Technol. 7, 77–87 (2020)

    Google Scholar 

  42. F.R. Mariosi, J. Venturini, A. da Cas Viegas, C.P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram. Int. 46, 2772–2779 (2020)

    Google Scholar 

  43. K. Gu, B. Chen, Y. Chen, Preparation and tribological properties of lanthanum-doped TiO2 nanoparticles in rapeseed oil. J. Rare Earths 31, 589–594 (2013)

    Google Scholar 

  44. A.M. Al-Hamdi, M. Sillanpää, J. Dutta, Intermediate formation during photodegradation of phenol using lanthanum doped tin dioxide nanoparticles. Res. Chem. Intermed. 42, 3055–3069 (2016)

    Google Scholar 

  45. P. Kumar, J. Singh, M.K. Pandey, C.E. Jeyanthi, R. Siddheswaran, M. Paulraj, K.N. Hui, K.S. Hui, Synthesis, structural, optical and Raman studies of pure and lanthanum doped ZnSe nanoparticles. Mater. Res. Bull. 49, 144–150 (2014)

    Google Scholar 

  46. W. Lekphet, T.-C. Ke, C. Su, S. Kathirvel, P. Sireesha, S.B. Akula, W.-R. Li, Morphology control studies of TiO2 microstructures via surfactant-assisted hydrothermal process for dye-sensitized solar cell applications. Appl. Surf. Sci. 382, 15–26 (2016)

    ADS  Google Scholar 

  47. Y. Wang, S. Zhang, K. Wei, N. Zhao, J. Chen, X. Wang, Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater. Lett. 60, 1484–1487 (2006)

    Google Scholar 

  48. H. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Google Scholar 

  49. L. Lutterotti, Program Maud (version 2.33), in

  50. M. Shkir, S. AlFaify, I.S. Yahia, V. Ganesh, H. Shoukry, Microwave-assisted synthesis of Gd3 + doped PbI2 hierarchical nanostructures for optoelectronic and radiation detection applications. Phys. B 508, 41–46 (2017)

    ADS  Google Scholar 

  51. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189–196 (2019)

    ADS  Google Scholar 

  52. S. AlFaify, M. Shkir, A facile one pot synthesis of novel pure and Cd doped PbI2 nanostructures for electro-optic and radiation detection applications. Opt. Mater. 88, 417–423 (2019)

    ADS  Google Scholar 

  53. M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, M. Wahab, Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047–2049 (2009)

    ADS  Google Scholar 

  54. A. Zeb, M. Arfan, T. Shahid, T.B. Masood, A.G. Wattoo, Z. Song, M. Shahzad, S.M. Ansari, Tailoring of pyramid cobalt doped nickel oxide nanostructures by composite-hydroxide-mediated approach. Mater. Chem. Phys. 239, 122036 (2020)

    Google Scholar 

  55. M.T. Khan, M. Shkir, A. Almohammedi, S. AlFaify, Fabrication and characterization of La doped PbI2 nanostructured thin films for opto-electronic applications. Solid State Sci. 90, 95–101 (2019)

    ADS  Google Scholar 

  56. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, S. AlFaify, A facile synthesis of Bi@PbS nanosheets and their key physical properties analysis for optoelectronic technology. Mater. Sci. Semicond. Process. 107, 104807 (2020)

    Google Scholar 

  57. J.E. Huheey, E.A. Keiter, R.L. Keiter, O.K. Medhi, Inorganic Chemistry: Principles of Structure and Reactivity (Pearson Education India, Delhi, 2006)

    Google Scholar 

  58. R.G. Pérez, O.P. Moreno, R.P. Merino, L.C. Lima, M.M. Specia, G.H. Téllez, E.R. Rosas, A.M. Rodríguez, Optical, morphological and structural characterization of Er3 + -Bi3 + co-doped PbS nanocrystals grown by chemical bath. Optik 162, 182–195 (2018)

    ADS  Google Scholar 

  59. A.D. John, Lange’s handbook of chemistry, in: Universitas of Tennese Knoxville, Fifthenth Edition, Mc. Graw Hill Inc, New York. Conference, (1999)

  60. M.C. Portillo, O.P. Moreno, R.G. Pérez, R.P. Merino, H.S. Juarez, S.T. Cuapa, E.R. Rosas, Characterization and growth of doped-PbS in situ with Bi3 + , Cd2 + and Er3 + ions by chemical bath. Mater. Sci. Semicond. Process. 72, 22–31 (2017)

    Google Scholar 

  61. A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, C. Mathieu, Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO: Al thin films. Res. Phys. 6, 133–138 (2016)

    Google Scholar 

  62. S. Mohd, K. Aslam, S.H. Mohamed, S. AlFaify, A facile microwave synthesis of PbS:Sr nanoparticles and their key structural, morphological, optical, photoluminescence, dielectric and electrical studies for optoelectronics. Mater. Res. Express 6(12), 1250 (2019)

    Google Scholar 

  63. H. Cao, G. Wang, S. Zhang, X. Zhang, Growth and photoluminescence properties of PbS nanocubes. Nanotechnology 17, 3280 (2006)

    ADS  Google Scholar 

  64. K. Nanda, S. Sarangi, S. Sahu, S. Deb, S. Behera, Raman spectroscopy of CdS nanocrystalline semiconductors. Phys. B 262, 31–39 (1999)

    ADS  Google Scholar 

  65. B. Deng, S.-L. Zhong, D.-H. Wang, S.-S. Wang, T.-K. Zhang, W.-G. Qu, A.-W. Xu, High yield synthesis of matchstick-like PbS nanocrystals using mesoporous organosilica as template. Nanoscale 3, 1014–1021 (2011)

    ADS  Google Scholar 

  66. G.D. Smith, S. Firth, R.J. Clark, M. Cardona, First-and second-order Raman spectra of galena (PbS). J. Appl. Phys. 92, 4375–4380 (2002)

    ADS  Google Scholar 

  67. B.M. Alshehri, M. Shkir, T.M. Bawazeer, S. AlFaify, M.S. Hamdy, A rapid microwave synthesis of Ag2S nanoparticles and their photocatalytic performance under UV and visible light illumination for water treatment applications. Phys. E: Low-Dimens. Syst. Nanostruct. 121, 114060 (2020)

    Google Scholar 

  68. G. Kortüm, W. Braun, G. Herzog, Principles and techniques of diffuse-reflectance spectroscopy. Angew. Chem. Int. Ed. Engl. 2, 333–341 (1963)

    Google Scholar 

  69. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    ADS  Google Scholar 

  70. M. Shkir, Effect of titan yellow dye on morphological, structural, optical, and dielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31, 1046–1055 (2016)

    ADS  Google Scholar 

  71. A. Khan, M. Shkir, M.A. Manthrammel, V. Ganesh, I.S. Yahia, M. Ahmed, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, S. AlFaify, Effect of Gd doping on structural, optical properties, photoluminescence and electrical characteristics of CdS nanoparticles for optoelectronics. Ceram. Int. 45, 10133–10141 (2019)

    Google Scholar 

  72. J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng, Y.D. Li, Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior. Chem- A Eur J. 11, 1889–1894 (2005)

    Google Scholar 

  73. M. Cardona, D.L. Greenaway, Optical properties and band structure of group IV-VI and group V materials. Phys. Rev. 133, A1685 (1964)

    ADS  Google Scholar 

  74. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006)

    Google Scholar 

  75. L. Hu, W. Wang, H. Liu, J. Peng, H. Cao, G. Shao, Z. Xia, W. Ma, J. Tang, PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells. J. Mater. Chem. A 3, 515–518 (2015)

    Google Scholar 

  76. R. Palomino-Merino, O. Portillo-Moreno, L. Chaltel-Lima, R.G. Pérez, M. de Icaza-Herrera, V. Castaño, Chemical bath deposition of PbS: Hg 2 + nanocrystalline thin films. J. Nanomater. 2013, 45 (2013)

    Google Scholar 

  77. A.J. Deotale, R.V. Nandedkar, Correlation between particle size, strain and band gap of iron oxide nanoparticles. Mater. Today: Proc. 3, 2069–2076 (2016)

    Google Scholar 

  78. S. Ramakanth, K.C.J. Raju, Band gap narrowing in BaTiO3 nanoparticles facilitated by multiple mechanisms. J. Appl. Phys. 115, 173507 (2014)

    ADS  Google Scholar 

  79. A.A. Khiar, A.K. Arof, Conductivity studies of starch-based polymer electrolytes. Ionics 16, 123–129 (2010)

    Google Scholar 

  80. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006)

    Google Scholar 

  81. J. Yang, X. Meng, M. Shen, L. Fang, J. Wang, T. Lin, J. Sun, J. Chu, Hopping conduction and low-frequency dielectric relaxation in 5 mol% Mn doped (Pb, Sr) TiO 3 films. J. Appl. Phys. 104, 104113 (2008)

    ADS  Google Scholar 

  82. R.P. Ramasamy, K. Yang, M.H. Rafailovich, Polypropylene–graphene–a nanocomposite that can be converted into a meta-material at desired frequencies. RSC Adv. 4, 44888–44895 (2014)

    Google Scholar 

  83. G. Hirankumar, S. Selvasekarapandian, M. Bhuvaneswari, R. Baskaran, M. Vijayakumar, Ag + ion transport studies in a polyvinyl alcohol-based polymer electrolyte system. J. Solid State Electrochem. 10, 193 (2006)

    Google Scholar 

  84. E. Rhoderick, R. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)

    Google Scholar 

  85. R. Gupta, S. Misra, B. Malhotra, N. Beladakere, S. Chandra, Metal/semiconductive polymer Schottky device. Appl. Phys. Lett. 58, 51–52 (1991)

    ADS  Google Scholar 

  86. K. Chandekar, A. Kumar, S. Singh, Study of trapping density in electrical characteristics of CdTe thin films, in: AIP Conference Proceedings, American Institute of Physics, 2011, pp. 659–660

  87. M.T. Khan, A. Kaur, S. Dhawan, S. Chand, Hole transport mechanism in organic/inorganic hybrid system based on in situ grown cadmium telluride nanocrystals in poly (3-hexylthiophene). J. Appl. Phys. 109, 114509 (2011)

    ADS  Google Scholar 

  88. M.T. Khan, V. Agrawal, A. Almohammedi, V. Gupta, Effect of traps on the charge transport in semiconducting polymer PCDTBT. Solid-State Electron. 145, 49–53 (2018)

    ADS  Google Scholar 

  89. M.T. Khan, A. Almohammedi, Effect of CdS nanocrystals on charge transport mechanism in poly (3-hexylthiophene). J. Appl. Phys. 122, 075502 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University for funding this research through the Fast-track Research Funding Program. Authors from KKU would like to express their gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support. A. Khan is grateful to the Researchers Supporting Project number (RSP-2020/127), King Saud University, Riyadh, Saudi Arabia, for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd. Shkir or S. AlFaify.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkir, M., Chandekar, K.V., Alshahrani, T. et al. An impact of La doping content on key physical properties of PbS spherical nanoparticles facilely synthesized via low temperature chemical route. Eur. Phys. J. Plus 135, 816 (2020). https://doi.org/10.1140/epjp/s13360-020-00740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00740-x

Navigation