Skip to main content

Self-consistent one-electron equation for many-electron systems and its general application to ground and excited states

Abstract

The present status of ab initio calculations for electronic states requires the further development of the quantum many-body theory which mainly targets the improvement of the fundamental equation in the sense of completely non-empirical, i.e., true ab initio theory. In compliance with this requirement, we present an alternative self-consistent one-electron equation different from both the Hartree–Fock equation and the Kohn–Sham equation, but essentially the improvement and unification of them. This equation includes the exchange and correlation effect in an ab initio way based on the quantum principles. To derive a one-electron equation including the exchange effect in an explicit way in terms of antisymmetric wavefunctions, we introduce a new concept called the equivalent function. Moreover, to treat the electronic correlation in a first-principle way, we introduce another new concept referred to as the phase norm which specifies the mutual-electron-approachable limit in terms of phase space. The derived equation becomes a self-consistent one-electron equation which satisfies the main requirements for ab initio calculations. This equation offers a big advantage of calculating electronic states of many-electron systems in a unified way commonly applicable to all stationary state problems, irrespective of ground or excited states, without recourse to the approaches based on the Hartree–Fock or the density functional theory.

This is a preview of subscription content, access via your institution.

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The article aims at the improvement of the fundamental equation for the calculation of electronic states in the sense of completely non-empirical, i.e., true ab initio theory. The proposed self-consistent one-electron equation different from both the Hartree-Fock equation and the Kohn-Sham equation includes the exchange and correlation effect in an ab initio way based on the quantum principles, and offers a big advantage of calculating electronic states of many-electron systems in a unified way commonly applicable to all stationary state problems, irrespective of ground or excited states.]

References

  1. 1.

    D.R. Hartree, The wave mechanics of an atom with a non-coulomb central field. I. Theory and methods. Proc. Camb. Philos. Soc. 24, 89–110 (1928)

    MATH  ADS  Google Scholar 

  2. 2.

    J.C. Slater, The self-consistent field and the structure of atoms. Phys. Rev. 32, 339–348 (1928)

    MATH  ADS  Google Scholar 

  3. 3.

    J. Kohanoff, Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  4. 4.

    V. Fock, Näherungsmethode zur Losung des quantenmechanischen Mehrkörperprobleme. Z. Phys. 61, 126–148 (1930)

    MATH  ADS  Google Scholar 

  5. 5.

    E. Lipparini, Modern Many-Particle Physics: Atomic Gases, Quantum Dots and Quantum Fluids (World Scientific, Newjersey, 2003)

    Google Scholar 

  6. 6.

    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 1999)

    Google Scholar 

  7. 7.

    E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87–94 (1975)

    MathSciNet  MATH  ADS  Google Scholar 

  8. 8.

    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, 864–867 (1964)

    MathSciNet  ADS  Google Scholar 

  9. 9.

    W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)

    MathSciNet  ADS  Google Scholar 

  10. 10.

    J.H. McGUIRE, Electron Correlation Dynamics in Atomic Collisions (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  11. 11.

    N.M. March, Electron Correlation in the Solid State (Imperial College Press, London, 1999)

    Google Scholar 

  12. 12.

    V.V. Karasiev, T. Sjostrom, J. Dufty, S.B. Trickey, Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculation. Phys. Rev. Lett. 112, 076403 (2014)

    ADS  Google Scholar 

  13. 13.

    M. Cafiero, A correlation functional for use with exact exchange in Kohn-Sham density functional theory. Chem. Phys. Lett. 418, 126–131 (2006)

    ADS  Google Scholar 

  14. 14.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  15. 15.

    A.D. Boese, N.L. Doltsinis et al., New generalized gradient approximation functionals. J. Chem. Phys. 112(4), 1670–1678 (2000)

    ADS  Google Scholar 

  16. 16.

    A.D. Boese, N.C. Handy, A new parametrization of exchange-correlation generalized gradient approximation functionals. J. Chem. Phys. 88(4), 5497–5503 (2001)

    ADS  Google Scholar 

  17. 17.

    L.A. Constantin, E. Fabiano, F.D. Sala, Meta-GGA exchange-correlation functional with a balanced treatment of nonlocality. J. Chem. Theory Compt. 9, 2256–2263 (2013)

    Google Scholar 

  18. 18.

    A.D. Becke, Density functional calculations of molecular bond energies. J. Chem. Phys. 84(8), 4524–4529 (1986). 15 April

    ADS  Google Scholar 

  19. 19.

    A.D. Becke, Density functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098–3100 (1988)

    ADS  Google Scholar 

  20. 20.

    A.D. Becke, Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107(20), 8554–8560 (1997). 22 November

    ADS  Google Scholar 

  21. 21.

    S. Sharma, J.K. Dewhurst, A. Sanna, E.K.U. Gross, Bootstrap approximation for the exchange-correlation kernel of time-dependent density-functional theory. Phys. Rev. Lett. 107, 186401 (2011)

    ADS  Google Scholar 

  22. 22.

    J.P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33(12), 8800–8802 (1986)

    ADS  Google Scholar 

  23. 23.

    J.P. Perdew, W. Yue, Accurate andsimple analytical representation of electron-gas correlation energy. Phys. Rev. B 45(23), 13244–13249 (1992)

    ADS  Google Scholar 

  24. 24.

    S. Gusarov, P. Malmqvist, R. Lindh, B.O. Roos, Correlation potentials for a multiconfigurational-based density functional theory with exact exchange. Theor. Chem. Acc. (Theor. Chem. Acc.) 12, 84–94 (2004)

    Google Scholar 

  25. 25.

    L. González, D. Escudero, L. Serrano-Andrés, Progress and challenges in the calculation of electronic excited states. ChemPhysChem 13, 28–51 (2012)

    Google Scholar 

  26. 26.

    R.E. Stratmann, G.E. Scuseria, M.J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 109, 8218–8224 (1998)

    ADS  Google Scholar 

  27. 27.

    E.K.U. Gross, J.F. Dobson, M. Petersilka, Density- functional theory of time-dependent phenomena. Top. Curr. Chem. 181, 81–172 (1996)

    Google Scholar 

  28. 28.

    C. Jamorski, M.E. Casida, D.R. Salahub, Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: \(N_2\) as a case study. J. Chem. Phys. 104, 5134 (1996)

    Google Scholar 

  29. 29.

    R. Bauernschmitt, R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time-dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996)

    ADS  Google Scholar 

  30. 30.

    M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449 (1998)

    ADS  Google Scholar 

  31. 31.

    A. Kazaryan, J. Heuver, M. Filatov, Excitation energies from spin-restricted ensemble-referenced Kohn–Sham method: a state-average approach. J. Phys. Chem. A 112, 12980–12988 (2008)

    Google Scholar 

  32. 32.

    K.D. Closser, M. Head-Gordon, Ab Initio calculations on the electronically excited states of small helium clusters. J. Phys. Chem. A 114, 8023–8032 (2010)

    Google Scholar 

  33. 33.

    C.M. Isborn, N. Luehr, I.S. Ufimtsev, T.J. Martínez, Excited-state electronic structure with configuration interaction singles and Tamm–Dancoff time-dependent density functional theory on graphical processing units. J. Chem. Theory Comput. 7, 1814–1823 (2011)

    Google Scholar 

  34. 34.

    B.O. Roos, K. Andersson, Multiconfigurational perturbation theory with shift-the \(Cr_2\) potential revisited. Chem. Phys. Lett. 245, 215–223 (1995)

    Google Scholar 

  35. 35.

    R.J. Bartlett, Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J. Phys. Chem. 93, 1697–1708 (1989)

    Google Scholar 

  36. 36.

    M. Nooijen, R.J. Bartlett, Similarity transformed equation-of-motion coupled-cluster theory: details, examples, and comparisons. J. Chem. Phys. 107, 6812–6830 (1997)

    ADS  Google Scholar 

  37. 37.

    H. Koch, A.S. Merás, The integral-direct coupled cluster singles and doubles model. J. Chem. Phys. 104, 4157 (1996)

    ADS  Google Scholar 

  38. 38.

    E. Kaxiras, Atomic and Electronic Structure of Solids (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  39. 39.

    D.L. Chapman, A contribution to the theory of electrocapillarity. Philos. Mag. Lett. 25, 475–481 (1913)

    MATH  Google Scholar 

  40. 40.

    G. Gouy, Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Apple. 9, 455–468 (1910)

    MATH  Google Scholar 

  41. 41.

    P. Debye, E. Hückel, Zur Theorie der Elektrolyte. Phys. Z. 24, 185–206 (1923)

    MATH  Google Scholar 

  42. 42.

    C. Jong et al., Ensemble in phase space: statistical formalism of quantum mechanics. Pramana J. Phys. 92(5), 83 (2019)

    ADS  Google Scholar 

  43. 43.

    M. Thiele, S. Kümmel, Frequancy dependence of the exact exchange-corrrelation kernel of time-dependent density-functional theory. Phys. Rev. Lett. 112, 083001 (2014)

    ADS  Google Scholar 

  44. 44.

    A. Weber, F. Astorga, Functional perturbative approach to equal-time correlation functions. Int. J. Mod. Phys. A 29(5), 1450018 (2014)

    MATH  ADS  Google Scholar 

  45. 45.

    E.B. Guidez, M.S. Gordon, Dispersion correction derived from first principles for density functional theory and Hartree–Fock theory. J. Phys. Chem. A 119, 2161–2168 (2015)

    Google Scholar 

  46. 46.

    M.R. Mark, D. Whitenack, A. Wasserman, Exchange-correlation asymptotics and high harmonic spectra. Chem. Phys. Lett. 558, 15–19 (2013)

    ADS  Google Scholar 

  47. 47.

    K. Higuchi, M. Higuchi, Exchange and correlation energy functional in the current-density functional theory. Phys. B 312–313, 534–536 (2002)

    ADS  Google Scholar 

  48. 48.

    T. Jarborg, Pair correlation functions for exchange and correlation in uniform spin densities. Phys. Lett. A 260, 395–399 (1999)

    ADS  Google Scholar 

  49. 49.

    J.M. Pitarke, L.A. Constantin, J.P. Perdew, Wave-vector analysis of the jellium exchange-correlation surface energy in the random-phase approximation: Support for nonemphirical density functionals. Phys. Rev B 74, 045121 (2006)

    ADS  Google Scholar 

  50. 50.

    M. Hanas, M. Markowski, Assessing accuracy of exchange-correlation functionals for singlet-triplet excitations. Comput. Theor. Chem. 1060, 52–57 (2015)

    Google Scholar 

  51. 51.

    F.D. Sala, A. Görling, Asymptotic behavior of the Kohn–Sham exchange potential. Phys. Rev. Lett. 89, 033003 (2002)

    ADS  Google Scholar 

  52. 52.

    F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke–Johnson exchange potential. J. Phys.: Condens. Matter 19, 196208 (2007)

    ADS  Google Scholar 

  53. 53.

    A.V. Arbuznikov, M. Kaupp, Local hybrid exchange-correlation functional based on the dimensionless density gradient. Chem. Phys. Lett. 440, 160–168 (2007)

    ADS  Google Scholar 

  54. 54.

    J.A. White, D.M. Bird, Implementation of gradient-corrected exchange-correlation potentials in Car–Parrinello total-energy calculations. Phys. Rev. B 50(7), 4954–4957 (1994)

    ADS  Google Scholar 

  55. 55.

    F. Muniz-Miranda, M.C. Menziani, A. Pedone, Assessment of exchange-correlation functionals in reproducing the structure and optical gap of organic-protected gold nanoclusters. J. Phys. Chem. C 118, 7532–7544 (2014)

    Google Scholar 

  56. 56.

    M. Lein, S. Kümmel, Exchange time-dependent exchange-correlation potentials for strong-field electron dynamics. Phys. Rev. Lett. 94, 143003 (2005)

    ADS  Google Scholar 

  57. 57.

    S. Kurth, Exchange-correlation energy of the non-uniformly scaled hydrogen atom. J. Mol. Struc. (Theochem) 501, 189–194 (2000)

    Google Scholar 

Download references

Acknowledgements

This work was supported partially from the Committee of Education, Democratic People’s Republic of Korea, under the project entitled “Ab Initio Calculation: Exchange-Correlation Effects and Excited States.” We thank Profs. Chol-Jun Yu and Hak-Chol Pak from Kim Il Sung University for advice and help. We are grateful to Prof. Il-Yong Kang from Kim Chaek University of Technology for information and comment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chol Jong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jong, C. Self-consistent one-electron equation for many-electron systems and its general application to ground and excited states. Eur. Phys. J. Plus 135, 746 (2020). https://doi.org/10.1140/epjp/s13360-020-00732-x

Download citation