Skip to main content
Log in

A novel study on time-dependent viscosity model of magneto-hybrid nanofluid flow over a permeable cone: applications in material engineering

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The dominating features of hybrid nanofluid such as high heat transfer rates, excellent electrical and thermal conductivity, and low cost, have been successfully attracted the attention of global researchers. In light of these amazing features, the current mathematical research explores the effects of variable viscosity on radiative magneto-hybrid nanofluid (Cu–Fe\(_{3}\)O\(_{4}\)/water) flow over a vertical cone inside porous medium. In addition, variable heat flux relation with boundary layer flow in the presence of heat generation/absorption is scrutinized. The Crank–Nicolson scheme together with Thomas algorithm is implemented to obtain the numerical solutions of constructed mathematical model with the aid of MATLAB software. The impact of various controlling parameters on virtual flow properties, temperature and velocity is scrutinized, and the obtained outcomes are exhibited graphically. The physically important quantities such as heat transfer coefficient and wall shear stress are evaluated versus governing constraints, and the results are summarized in the tables and illustrated graphically as well. The results unveil that the thermal performance of the system increases in the presence of nanoparticles, magnetic field and thermal radiation. Moreover, velocity of the fluid increases due to high permeability effects. The results of this work may have useful applications in materials science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. Technical Report (Argonne National Lab, IL, USA, 1995)

  2. K. Khanafer, K. Vafai, A review on the applications of nanofluids in solar energy field. Renew. Energy 123, 398–406 (2018)

    Google Scholar 

  3. M. Suleman, S. Riaz, In silico study of hyperthermia treatment of liver cancer using core–shell CoFe\(_2\)O\(_4\)@ MnFe\(_2\)O\(_4 \) magnetic nanoparticles. J. Magn. Magn. Mater. 498, 166143 (2020)

    Google Scholar 

  4. P. Nithya, M. Sundrarajan, Ionic liquid functionalized biogenic synthesis of agau bimetal doped CeO\(_2 \) nanoparticles from justicia adhatoda for pharmaceutical applications: antibacterial and anti-cancer activities. J. Photochem. Photobiol. B: Biol. 202, 111706 (2020)

    Google Scholar 

  5. M. Hojjat, Nanofluids as coolant in a shell and tube heat exchanger: ANN modeling and multi-objective optimization. Appl. Math. Comput. 365, 124710 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Z. Chen, D. Zheng, J. Wang, L. Chen, B. Sundén, Experimental investigation on heat transfer characteristics of various nanofluids in an indoor electric heater. Renew. Energy 147, 1011–1018 (2020)

    Google Scholar 

  7. D. Lisjak, A. Mertelj, Anisotropic magnetic nanoparticles: a review of their properties, syntheses and potential applications. Prog. Mater. Sci. 95, 286–328 (2018)

    Google Scholar 

  8. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30, 1–14 (2017)

    Google Scholar 

  9. M. Goharkhah, S. Gharehkhani, S. Fallah, M. Ashjaee, Dynamic measurement of ferrofluid thermal conductivity under an external magnetic field. Heat Mass Transf. 55, 1583–1592 (2019)

    ADS  Google Scholar 

  10. E. Shojaeizadeh, F. Veysi, K. Goudarzi, Heat transfer and thermal efficiency of a lab-fabricated ferrofluid-based single-ended tube solar collector under the effect of magnetic field: an experimental study. Appl. Therm. Eng. 164, 114510 (2020)

    Google Scholar 

  11. M. Bezaatpour, M. Goharkhah, Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow. Appl. Therm. Eng. 167, 114801 (2020)

    Google Scholar 

  12. A.M. Aly, S.E. Ahmed, ISPH simulations for a variable magneto-convective flow of a ferrofluid in a closed space includes open circular pipes. Int. Commun. Heat Mass Transf. 110, 104412 (2020)

    Google Scholar 

  13. M. Valitabar, M. Rahimi, N. Azimi, Experimental investigation on forced convection heat transfer of ferrofluid between two-parallel plates. Heat Mass Transf. 56, 53–64 (2020)

    ADS  Google Scholar 

  14. M. Bezaatpour, H. Rostamzadeh, Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field. Appl. Therm. Eng. 164, 114462 (2020)

    Google Scholar 

  15. M.H. Esfe, M.R.S. Emami, M.K. Amiri, Experimental investigation of effective parameters on MWCNT-TiO\(_2\)/SAE50 hybrid nanofluid viscosity. J. Therm. Anal. Calorim. 137, 743–757 (2019)

    Google Scholar 

  16. M.H. Esfe, P.M. Behbahani, A.A.A. Arani, M.R. Sarlak, Thermal conductivity enhancement of SiO\(_2\)-MWCNT (85: 15%)-EG hybrid nanofluids. J. Therm. Anal. Calorim. 128, 249–258 (2017)

    Google Scholar 

  17. M.H. Esfe, S. Esfandeh, M.K. Amiri, M. Afrand, A novel applicable experimental study on the thermal behavior of SWCNTs (60%)–MgO (40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technol. 342, 998–1007 (2019)

    Google Scholar 

  18. V. Kumar, J. Sarkar, Particle ratio optimization of Al\(_2\)O\(_3\)-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance. Appl. Therm. Eng. 165, 114546 (2020)

    Google Scholar 

  19. M. Zufar, P. Gunnasegaran, H. Kumar, K. Ng, Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. Int. J. Heat Mass Transf. 146, 118887 (2020)

    Google Scholar 

  20. R. Mohebbi, M. Izadi, A.A. Delouei, H. Sajjadi, Effect of MWCNT-Fe\(_3\)O\(_4 \)/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J. Therm. Anal. Calorim. 135, 3029–3042 (2019)

    Google Scholar 

  21. M. Izadi, R. Mohebbi, A.A. Delouei, H. Sajjadi, Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int. J. Mech. Sci. 151, 154–169 (2019)

    Google Scholar 

  22. I. Shahzadi, S. Bilal, A significant role of permeability on blood flow for hybrid nanofluid through bifurcated stenosed artery: drug delivery application. Comput. Methods Programs Biomed. 187, 105248 (2020)

    Google Scholar 

  23. M. Bahiraei, N. Mazaheri, A. Rizehvandi, Application of a hybrid nanofluid containing graphene nanoplatelet-platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl. Therm. Eng. 149, 588–601 (2019)

    Google Scholar 

  24. R. Mohebbi, S. Mehryan, M. Izadi, O. Mahian, Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. J. Therm. Anal. Calorim. 137, 1719–1733 (2019)

    Google Scholar 

  25. A. Bhattad, J. Sarkar, P. Ghosh, Energetic and exergetic performances of plate heat exchanger using brine-based hybrid nanofluid for milk chilling application. Heat Transf. Eng. 41(6–7), 522–535 (2020)

    ADS  Google Scholar 

  26. H.W. Xian, N.A.C. Sidik, S.R. Aid, T.L. Ken, Y. Asako, Review on preparation techniques, properties and performance of hybrid nanofluid in recent engineering applications. J. Adv. Res. Fluid Mech. Therm. Sci. 45, 1–13 (2018)

    Google Scholar 

  27. W. Khan, O. Makinde, Z. Khan, Non-aligned mhd stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. Int. J. Heat Mass Transf. 96, 525–534 (2016)

    Google Scholar 

  28. B. Bin-Mohsin, Buoyancy effects on MHD transport of nanofluid over a stretching surface with variable viscosity. IEEE Access 7, 75398–75406 (2019)

    Google Scholar 

  29. T. Abbas, S. Rehman, R.A. Shah, M. Idrees, M. Qayyum, Analysis of MHD Carreau fluid flow over a stretching permeable sheet with variable viscosity and thermal conductivity. Physica A Stat. Mech. Appl. 551, 124225 (2020)

    MathSciNet  Google Scholar 

  30. M.E. Karim, M.A. Samad, M. Ferdows, Numerical study of the effect of variable viscosity on unsteady pulsatile nanofluid flow through a Couette channel of stretching wall with convective heat transfer, in: AIP Conference Proceedings, vol. 2121, AIP Publishing LLC, p. 070005

  31. J. Gbadeyan, E. Titiloye, A. Adeosun, Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip. Heliyon 6, e03076 (2020)

    Google Scholar 

  32. T. Salahuddin, S. Muhammad, S. Sakinder, Impact of generalized heat and mass flux models on Darcy–Forchheimer Williamson nanofluid flow with variable viscosity. Phys. Scr. 94, 125201 (2019)

    ADS  Google Scholar 

  33. A. Hussain, S. Afzal, R. Rizwana, M.Y. Malik, MHD stagnation point flow of a Casson fluid with variable viscosity flowing past an extending/shrinking sheet with slip effects. Physica A Stat. Mech. Appl. 553, 124080 (2020)

    MathSciNet  Google Scholar 

  34. S. Nadeem, Z. Ahmed, S. Saleem, Carbon nanotubes effects in magneto nanofluid flow over a curved stretching surface with variable viscosity. Microsyst. Technol. 25, 2881–2888 (2019)

    Google Scholar 

  35. M. Khan, T. Salahuddin, M. Malik, F.O. Mallawi, Change in viscosity of Williamson nanofluid flow due to thermal and solutal stratification. Int. J. Heat Mass Transf. 126, 941–948 (2018)

    Google Scholar 

  36. K. Vafai, Preface: porous media and its applications in science, engineering, and industry, in: AIP Conference Proceedings 4, vol. 1453, American Institute of Physics, pp. 1–7

  37. A. Kasaeian, R. Daneshazarian, O. Mahian, L. Kolsi, A.J. Chamkha, S. Wongwises, I. Pop, Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)

    Google Scholar 

  38. M. Ramzan, M. Mohammad, F. Howari, Magnetized suspended carbon nanotubes based nanofluid flow with bio-convection and entropy generation past a vertical cone. Sci. Rep. 9, 1–15 (2019)

    Google Scholar 

  39. I. Tlili, M. Ramzan, S. Kadry, H.-W. Kim, Y. Nam, Radiative mhd nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and hall current. Entropy 22, 354 (2020)

    ADS  Google Scholar 

  40. H. Hanif, I. Khan, S. Shafie, W.A. Khan, Heat transfer in cadmium telluride–water nanofluid over a vertical cone under the effects of magnetic field inside porous medium. Processes 8, 7 (2020)

    Google Scholar 

  41. A. Jarray, Z. Mehrez, A. El Cafsi, Mixed convection ag-mgo/water hybrid nanofluid flow in a porous horizontal channel. Eur. Phys. J. Spec. Top. 228, 2677–2693 (2019)

    Google Scholar 

  42. H. Hanif, I. Khan, S. Shafie, MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium. Phys. Scr. 94, 125208 (2019)

    ADS  Google Scholar 

  43. H.J. Xu, Z.B. Xing, F. Wang, Z. Cheng, Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem. Eng. Sci. 195, 462–483 (2019)

    Google Scholar 

  44. S. Sureshkumar, S. Muthukumar, M. Muthtamilselvan, D.-H. Doh, G.-R. Cho, E. Prem, Mhd convection of nanofluid in porous medium influenced by slanted Lorentz force. Eur. Phys. J. Spec. Top. 229, 331–346 (2020)

    Google Scholar 

  45. Z. Li, M. Sheikholeslami, A.S. Mittal, A. Shafee, R.-U. Haq, Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method. Eur. Phys. J. Plus 134, 1–10 (2019)

    Google Scholar 

  46. H. Hanif, I. Khan, S. Shafie, Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study. J. Therm. Anal. Calorim. 141, 2001–2017 (2020)

    Google Scholar 

  47. R. Mahmood, S. Bilal, I. Khan, N. Kousar, A.H. Seikh, E.-S.M. Sherif, A comprehensive finite element examination of Carreau Yasuda fluid model in a lid driven cavity and channel with obstacle by way of kinetic energy and drag and lift coefficient measurements. J. Mater. Res. Technol. 9(2), 1785–1800 (2020)

    Google Scholar 

  48. R. Mahmood, S. Bilal, A.H. Majeed, I. Khan, E.-S.M. Sherif, A comparative analysis of flow features of Newtonian and power law material: a new configuration. J. Mater. Res. Technol. 9(2), 1978–1987 (2020)

    Google Scholar 

  49. R. Kannan, B. Pullepu, S.A. Shehzad, Numerical solutions of dissipative natural convective flow from a vertical cone with heat absorption, generation, mhd and radiated surface heat flux. Int. J. Appl. Comput. Math. 5, 24 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Ministry of Higher Education (MOHE) Malaysia and Research Management Centre-UTM, Universiti Teknologi Malaysia (UTM) for financial support through vote numbers 5F004, 07G70, 07G72, 07G76, 07G77, 08G33 and 5F278. The first author also wants to acknowledge the financial support of SBK Women’s University, Quetta, Pakistan through SBKWU FDP Split Scholarship Phase-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, H., Khan, I. & Shafie, S. A novel study on time-dependent viscosity model of magneto-hybrid nanofluid flow over a permeable cone: applications in material engineering. Eur. Phys. J. Plus 135, 730 (2020). https://doi.org/10.1140/epjp/s13360-020-00724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00724-x

Navigation