Skip to main content
Log in

Quantum floquet oscillation in borophane

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The hydrogenated borophene is known as borophane, a two-dimensional material which has Dirac characteristics. In this work, it is described how anisotropy of borophane, i.e. wave vector angle, plays a significant role in the Floquet frequency and collapse–revival phenomenon. The various mathematical techniques have been described for the formulation of Floquet frequency. The role of anisotropy is justified by using numerical simulation. The bandgap of borophane can be opened by using Floquet frequency. The Rabi oscillation and Bloch–Siegert shift have also been studied in the perspective of anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  2. F.D.M. Haldane, Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61(18), 2015 (1988)

    Article  ADS  Google Scholar 

  3. A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015)

    Article  ADS  Google Scholar 

  4. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8(6), 563 (2016)

    Article  Google Scholar 

  5. A. Lopez-Bezanilla, P.B. Littlewood, Electronic properties of \(8-{P}mmn\) borophene. Phys. Rev. B 93(24), 241405 (2016)

    Article  ADS  Google Scholar 

  6. N.G. Szwacki, Boron fullerenes: a first-principles study. Nanoscale Res. Lett. 3(2), 49 (2008)

    Article  ADS  Google Scholar 

  7. M. Nakhaee, S.A. Ketabi, F.M. Peeters, Tight-binding model for borophene and borophane. Phys. Rev. B 97(12), 125424 (2018)

    Article  ADS  Google Scholar 

  8. L.-C. Xu, A. Du, L. Kou, Hydrogenated borophene as a stable two-dimensional dirac material with an ultrahigh fermi velocity. Phys. Chem. Chem. Phys. 18(39), 27284–27289 (2016)

    Article  Google Scholar 

  9. Z.A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Planar hexagonal B\(_{36}\) as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5(1), 1–6 (2014)

    Article  Google Scholar 

  10. Cheng-Cheng Liu, Hua Jiang, Yugui Yao, Low-energy effective hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84(19), 195430 (2011)

    Article  ADS  Google Scholar 

  11. V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Investigation of the crystal and magnetic structures of BaFe\(_{12-x}\)Al\(_x\)O\(_{19}\) solid solutions (x= 0.1–1.2). Crystallogr. Rep. 60(5):629–635 (2015)

  12. A.L. Kozlovskiy, I.E. Kenzhina, M.V. Zdorovets, FeCo-Fe\(_2\)CoO\(_4\)/Co\(_3\)O\(_4\) nanocomposites: phase transformations as a result of thermal annealing and practical application in catalysis. Ceram. Int. 46(8), 10262–10269 (2020)

    Article  Google Scholar 

  13. L.M. Xie, Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale 7(44), 18392–18401 (2015)

    Article  ADS  Google Scholar 

  14. D.A. Vinnik, F.V. Podgornov, N.S. Zabeivorota, E.A. Trofimov, V.E. Zhivulin, A.S. Chernukha, M.V. Gavrilyak, S.A. Gudkova, D.A. Zherebtsov, A.V. Ryabov et al., Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites. J. Magn. Magn. Mater. 498, 166190 (2020)

    Article  Google Scholar 

  15. A.V. Trukhanov, K.A. Astapovich, M.A. Almessiere, V.A. Turchenko, E.L. Trukhanova, V.V. Korovushkin, A.A. Amirov, M.A. Darwish, D.V. Karpinsky, D.A. Vinnik, et al., Pecularities of the magnetic structure and microwave properties in Ba(Fe\(_{1-x}\)Sc\(_x\))\(_{12}\)O\(_{19}\) (x\(<\)0.1) hexaferrites. J. Alloys Compd. 822:153575 (2020)

  16. H. Taghinejad, A.A. Eftekhar, P.M. Campbell, B. Beatty, M. Taghinejad, Y. Zhou, C.J. Perini, H. Moradinejad, W.E. Henderson, E.V. Woods et al., Strain relaxation via formation of cracks in compositionally modulated two-dimensional semiconductor alloys. NPJ 2D Mater. Appl. 2(1), 1–8 (2018)

    Article  Google Scholar 

  17. S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, H. Szymczak, The influence of oxygen deficiency on the magnetic and electric properties of La\(_{0.70}\)Ba\(_{0.30}\)MnO\(_{3-\gamma }\)\((0 \le \gamma \le 0.30)\) manganite with a perovskite structure. J. Exp. Theor. Phys., 95(2):308–315 (2002)

  18. M.V. Zdorovets, A.L. Kozlovskiy, The effect of lithium doping on the ferroelectric properties of LST ceramics. Ceram. Int. 46(10), 14548–14557 (2020)

    Article  Google Scholar 

  19. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, V.A. Ryzhov, H. Szymczak, R. Szymczak, M. Baran, Study of A-site ordered PrBaMn\(_2\)O\(_{6-\delta }\) manganite properties depending on the treatment conditions. J. Phys.: Condens. Matter 17(41), 6495 (2005)

  20. D.I. Shlimas, M.V. Zdorovets, A.L. Kozlovskiy, Synthesis and resistance to helium swelling of Li\(_2\)TiO\(_3\) ceramics. J. Mater. Sci.: Mater. Electron., 31, 12903–12912 (2020)

  21. Gaston Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Annales scientifiques de l’École normale supérieure 12, 47–88 (1883)

    Article  MathSciNet  Google Scholar 

  22. F. Casas, J.A. Oteo, J. Ros, Floquet theory: exponential perturbative treatment. J. Phys. A 34(16), 3379 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Eckardt, E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a floquet-space perspective. New J. Phys. 17(9), 093039 (2015)

    Article  ADS  Google Scholar 

  24. I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652 (1937)

    Article  ADS  Google Scholar 

  25. O.V. Kibis, M.V. Boev, V.M. Kovalev, I.A. Shelykh, Floquet engineering of the luttinger hamiltonian (2020). arXiv preprint arXiv:2002.03398

  26. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publishing Co Inc, Singapore, 2009)

    Book  Google Scholar 

  27. N.H. Lindner, G. Refael, V. Galitski, Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7(6), 490 (2011)

    Article  Google Scholar 

  28. Balázs Dóra, Jérôme Cayssol, Ferenc Simon, Roderich Moessner, Optically engineering the topological properties of a spin hall insulator. Phys. Rev. Lett. 108(5), 056602 (2012)

    Article  ADS  Google Scholar 

  29. R.W. Bomantara, J. Gong, Generating controllable type-II weyl points via periodic driving. Phys. Rev. B 94(23), 235447 (2016)

    Article  ADS  Google Scholar 

  30. Longwen Zhou, Jiangbin Gong, Recipe for creating an arbitrary number of floquet chiral edge states. Phys. Rev. B 97(24), 245430 (2018)

    Article  ADS  Google Scholar 

  31. L. Li, C.H. Lee, J. Gong, Realistic floquet semimetal with exotic topological linkages between arbitrarily many nodal loops. Phys. Rev. Lett. 121(3), 036401 (2018)

    Article  ADS  Google Scholar 

  32. R.W. Bomantara, G.N. Raghava, L. Zhou, J. Gong, Floquet topological semimetal phases of an extended kicked harper model. Phys. Rev. E 93(2), 022209 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. F. Bloch, A. Siegert, Magnetic resonance for nonrotating fields. Phys. Rev. 57(6), 522 (1940)

    Article  ADS  Google Scholar 

  34. Takashi Oka, Hideo Aoki, Photovoltaic hall effect in graphene. Phys. Rev. B 79(8), 081406 (2009)

    Article  ADS  Google Scholar 

  35. Motohiko Ezawa, Photoinduced topological phase transition and a single dirac-cone state in silicene. Phys. Rev. Lett. 110(2), 026603 (2013)

    Article  ADS  Google Scholar 

  36. H.L. Calvo, H.M. Pastawski, S. Roche, L.E.F.F. Torres, Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98(23), 232103 (2011)

    Article  ADS  Google Scholar 

  37. R. Wang, B. Wang, R. Shen, L. Sheng, D.Y. Xing, Floquet weyl semimetal induced by off-resonant light. EPL 105(1), 17004 (2014)

    Article  ADS  Google Scholar 

  38. Takahiro Morimoto, Naoto Nagaosa, Topological nature of nonlinear optical effects in solids. Sci. Adv. 2(5), e1501524 (2016)

    Article  ADS  Google Scholar 

  39. C-K. Chan, Y-T. Oh, J.H. Han, P.A Lee, Type-II Weyl cone transitions in driven semimetals. Phys. Rev. B 94(12), 121106 (2016)

  40. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Article  Google Scholar 

  41. J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44(20), 1323 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  42. Andrii Iurov, Liubov Zhemchuzhna, Godfrey Gumbs, Danhong Huang, Exploring interacting floquet states in black phosphorus: Anisotropy and bandgap laser tuning. J. Appl. Phys. 122(12), 124301 (2017)

    Article  ADS  Google Scholar 

  43. Luis E.F. Foa, Torres and Gianaurelio Cuniberti., Controlling the conductance and noise of driven carbon-based fabry-pérot devices. Appl. Phys. Lett. 94(22), 222103 (2009)

  44. Virginia Dal Lago, M. Atala, L.E.F.F. Torres, Floquet topological transitions in a driven one-dimensional topological insulator. Phys. Rev. A, 92(2), 023624 (2015)

  45. Wolfram Research, Inc. Mathematica, Version 11.1. Champaign, IL, 2017

  46. H.T. Dung, R. Tanaś, A.S. Shumovsky, Collapses, revivals, and phase properties of the field in Jaynes–Cummings type models. Opt. Commun. 79(6), 462–468 (1990)

    Article  ADS  Google Scholar 

  47. Z. Ficek, M.R. Wahiddin, Quantum Optics for Beginners (CRC Press, Boca Raton, 2014)

    MATH  Google Scholar 

  48. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1999), pp. 201–202

    Google Scholar 

  49. M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J.P. Rabe, C. Ropers, A. Knorr, T. Elsaesser, Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83(15), 153410 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is performed during ERASMUS MUNDUS Fellowship (2\(^{\mathrm {nd}}\) cohort of EUPHRATES Programme) by using the facility of Department of Theoretical Physics, Vilnius University, Lithuania. The author is highly obliged to Prof. Girish S. Setlur (IIT Guwahati) for giving him the motivation to work independently.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 239 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U. Quantum floquet oscillation in borophane. Eur. Phys. J. Plus 135, 729 (2020). https://doi.org/10.1140/epjp/s13360-020-00720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00720-1

Navigation