Skip to main content
Log in

A perturbation algorithm for the pointers of Franke–Gorini–Kossakowski–Lindblad–Sudarshan equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of behavior of open quantum systems consistently based on the Franke–Gorini–Kossakowski–Lindblad–Sudarshan (FGKLS) equation which covers evolution in situations when decoherence can be distinguished. We focus on the quantum measurement operation which is determined by final stationary states of an open system—so called pointers. We find pointers by applying the FGKLS equation to asymptotically constant density matrix. In seeking pointers, we have been able to propose a perturbative scheme of calculation, if we take the interaction components with an environment to be weak. Thus, the Lindblad operators can be used in some way as expansion parameters for perturbation theory. The scheme we propose is different for the cases of non-degenerate and degenerate Hamiltonian. We illustrate our scheme by particular examples of quantum harmonic oscillator with spin in external magnetic field. The efficiency of the perturbation algorithm is demonstrated by its comparison with the exact solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  2. M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007)

    Google Scholar 

  3. U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2007)

    Google Scholar 

  4. D. Calvania, A. Cuccoli, N.I. Gidopoulos, P. Verrucchi, PNAS 110, 6748 (2013)

    Article  ADS  Google Scholar 

  5. C. Foti, T. Heinosaari, S. Maniscalco, P. Verrucchi, Quantum 3, 179 (2019)

    Article  Google Scholar 

  6. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  Google Scholar 

  7. G. Lindblad, Rep. Math. Phys. 10, 393 (1976)

    Article  ADS  Google Scholar 

  8. V.A. Franke, Theor. Math. Phys. 27, 406 (1976)

    Article  Google Scholar 

  9. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  ADS  Google Scholar 

  10. A.A. Andrianov, J. Taron, R. Tarrach, Phys. Lett. B 507, 200 (2001)

    Article  ADS  Google Scholar 

  11. F. Benatti, R. Floreanini, Nucl. Phys. B 488, 335 (1997)

    Article  ADS  Google Scholar 

  12. F. Benatti, R. Floreanini, Nucl. Phys. B 511, 550 (1998)

    Article  ADS  Google Scholar 

  13. J.P. Blaizot, M.A. Escobedo, JHEP 1806, 034 (2018)

    Article  ADS  Google Scholar 

  14. N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, V.V. Skokov, JHEP 05, 025 (2019)

    Article  ADS  Google Scholar 

  15. R. Gambini, R.A. Porto, J. Pullin, Gen. Relativ. Gravit. 39, 1143 (2007)

    Article  ADS  Google Scholar 

  16. L.D. Landau, Z. Physik 45, 430 (1927). (see Collected Papers of L. D. Landau, Pergamon Press, 1965, p. 8)

    Article  ADS  Google Scholar 

  17. J. von Neumann, Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927, 245 (1927)

    MATH  Google Scholar 

  18. W.H. Zurek, Phys. Rev. D 24, 1516 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  19. W.H. Zurek, Phys. Rev. D 26, 1862 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Weinberg, Lectures on Quantum Mechanics (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  21. S. Weinberg, Phys. Rev. A 90, 042102 (2014)

    Article  ADS  Google Scholar 

  22. F. Benatti, A. Nagy, H. Narnhofer, J. Phys. A 44, 155303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. B.M. Villegas-Martínez, F. Soto-Eguibar, H.M. Moya-Cessa, Adv. Math. Phys. 2016, 9265039 (2016)

    Article  Google Scholar 

  24. A.C.Y. Li, F. Petruccione, J. Koch, Sci. Rep. 4, 4887 (2014)

    Article  ADS  Google Scholar 

  25. E.A. Gòmez, J.D. Castaño-Yepesa, S.P. Thirumuruganandhamc, Results Phys. 10, 353 (2018)

    Article  ADS  Google Scholar 

  26. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  27. T. Kato, Perturbation Theory of Linear Operators (Springer, Berlin, 1966)

    Book  Google Scholar 

  28. W.D. Heiss, J. Phys. A 45, 444016 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.A. Andrianov, M.V. Ioffe, O.O. Novikov, J. Phys. A 52, 425301 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by RFBR Grant No. 18-02-00264-a. The work of A.A.A. was funded by the Grant FPA2016-76005-C2-1-P and Grant 2017SGR0929 (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ioffe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, A.A., Ioffe, M.V., Izotova, E.A. et al. A perturbation algorithm for the pointers of Franke–Gorini–Kossakowski–Lindblad–Sudarshan equation. Eur. Phys. J. Plus 135, 531 (2020). https://doi.org/10.1140/epjp/s13360-020-00540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00540-3

Navigation