Skip to main content

Advertisement

Log in

Processing and compressive response of Al/SiC functionally graded composites

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Compressive behavior of Al/SiC functionally graded composites (FGCs) was experimentally investigated. The FGC specimens are composed of ceramic (SiC) and metal (Al) constituent, varying in a predetermined configuration through the plate thickness. The compressive tests of FGCs manufactured with powder stacking hot-pressing technique were performed at different temperatures ranging from 25 to 150 °C. Al/SiC functionally graded composite specimens having three different compositions: n = 0.1, n = 0.5 and n = 1, were produced and compared to each other. It was found that the compression behavior of the FGCs was highly affected by composition variation through sample thickness. The strength of the composites decreased with the testing temperature. On the other hand, yield strength and ultimate compressive strength values increased with compositional gradient. The ultimate compressive strength of the composites reached 300 MPa. A minimum absorbed energy during the compressive tests was 25.2 × 10−3 J/mm3 and 96.9 × 10−3 J/mm3 for the test temperatures of 25 °C and 150 °C, respectively, for the compositional gradient n = 1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Koizumi, Compos. B Eng. 28, 1–4 (1997)

    Article  Google Scholar 

  2. M. Naebe, K. Shirvanimoghaddam, Appl. Mater. Today 5, 223–245 (2016)

    Article  Google Scholar 

  3. G. Udupa, S.S. Rao, K.V. Gangadharan, Proc. Mater. Sci. 5, 1291–1299 (2014)

    Article  Google Scholar 

  4. L. Yan, Y. Chen, F. Liou, Addit. Manuf. 31, 100901 (2020)

    Google Scholar 

  5. M. V. Petr Lukáš, J. Vleugels, G. Anné, O. Van der Biest, Mater. Sci. Forum 571572, 309–314 (2008)

  6. B. Hatton, P.S. Nicholson, J. Am. Ceram. Soc. 84, 571–576 (2001)

    Article  Google Scholar 

  7. S.U.M. Gasik, J. Therm. Stresses 23, 395–409 (2000)

    Article  Google Scholar 

  8. J. Gottron, K.A. Harries, Q. Xu, Constr. Build. Mater. 66, 79–88 (2014)

    Article  Google Scholar 

  9. T.H.M. Sasaki, J. Ceram. Soc. Jpn. 99, 1002–1013 (1991)

    Article  Google Scholar 

  10. P. Malik, R. Kadoli, J. Vib. Control 24, 1171–1184 (2018)

    Article  Google Scholar 

  11. M.M. Nemat-Alla, M.H. Ata, M.R. Bayoumi, W. Khair-Eldeen, Mater. Sci. Appl. 2, 1708–1718 (2011)

    Google Scholar 

  12. H.M.F.A.Y. Watari, R. Miyao, M. Uo, T. Kawasaki, A.T.H.M. Omori, pp. 187–190, Kluwer Academic (2001)

  13. R. Rodrı́guez-Castro, R.C. Wetherhold, M.H. Kelestemur, Mater. Sci. Eng. A 323, 445–456 (2002)

  14. F. Erdogan, Compos. Eng. 5, 753–770 (1995)

    Article  Google Scholar 

  15. M. Aydin, M.K. Apalak, Mater. Sci. Eng. A 671, 107–117 (2016)

    Article  Google Scholar 

  16. W.A. Gooch, B.H.C. Chen, M.S. Burkins, R. Palicka, J.J. Rubin, R. Ravichandran, Mater. Sci. Forum 308–311, 614–621 (1999)

    Article  Google Scholar 

  17. P.N.S. Srinivas, R. Babu P, Balakrishna B, Mater. Res. Expr. 7, 026513 (2020)

  18. T.P.D. Rajan, R.M. Pillai, B.C. Pai, Int. J. Cast Met. Res. 21(1–4), 214–218 (2013)

    Google Scholar 

  19. F. Ebrahimi, Advances in Functionally Graded Materials and Structures, InTechOpen (2016)

  20. F. Milstein, B. Farber, K. Kim, L. van den Berg, W.F. Schnepple, Nucl. Instrum. Methods Phys. Res. 213, 65–76 (1983)

    Article  ADS  Google Scholar 

  21. E. Schmid, W. Boas, Plasticity of Crystals with Special Reference to Metals. F.A. Hughes & Co. Ltd. (1935)

  22. G. Gottstein, Physical Foundations of Materials Science (Springer, Berlin, 2004)

    Book  Google Scholar 

  23. W.F. Hosford, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  24. X.Q. Xu, D.F. Watt, Acta Mater. 44, 4501–4511 (1996)

    Article  ADS  Google Scholar 

  25. N. Shi, B. Wilner, R.J. Arsenault, Acta Metall. Mater. 40, 2841–2854 (1992)

    Article  Google Scholar 

  26. R.J. Arsenault, L. Wang, C.R. Feng, Acta Metall. Mater. 39, 47–57 (1991)

    Article  Google Scholar 

  27. D.D.C., Jnl. Mater, ASTM 1, 873–910 (1966)

  28. T. Christman, A. Needleman, S. Suresh, Acta Metall. 37, 3029–3050 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aydın.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, M., Toker, G.P., Acar, E. et al. Processing and compressive response of Al/SiC functionally graded composites. Eur. Phys. J. Plus 135, 486 (2020). https://doi.org/10.1140/epjp/s13360-020-00501-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00501-w

Navigation