Skip to main content
Log in

Cluster dynamics in the open-boundary heterogeneous ASEPs coupled with interacting energies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Cluster dynamics possess the promising studies in statistical physics and complexity science. While proposing physical models, applying analytical methods and exploring macroscopic properties and microscopic interactions are critical to investigate physical mechanisms of cluster dynamics. Among these physical models, totally asymmetric simple exclusion process is an important non-equilibrium statistical physics model, as it is essential enough to lattice models. Besides, it is also abbreviated as TASEP. Additionally, asymmetric simple exclusion processes, ASEPs, are derivatives, whose dynamics are based on TASEP with other nonlinear physical processes. Actually, heterogeneity of ASEPs is available to depict the real physical and engineering phenomena in a more reasonable manner. Different with previous researches, connected ASEPs are proposed here, which are constituted by two isolated ASEP coupled with a conjunction. As for each individual ASEP, its dynamics are dominated by interacting energies. Different with previous work, two completely different energies are introduced in system, which are used to describe the competition between subsystems. By analyzing complete transition processes among different particle configurations, mean-field dynamical equations are established. Phase diagrams under different energies are obtained, which yield to findings of coexistence phase of low densities, coexistence phase of high densities and coexistence phase of low and high densities. These local densities are qualitatively different. Hereafter, evolution regularities of phase diagrams obtained from local densities and currents are obtained to deeply understand physical mechanisms of complexity science. Expanded results and discussions about potential applications and fewer basic results are also presented. Expanded model with different Langmuir kinetics and internal interacting energies is established. Governing partially differential equations of the whole system are derived. Four steady stacking states of kinesin-II and OSM-3 on bovine brain tubulins affected by two different kinds of buffers are found. This work will help and promote the understanding of non-equilibrium statistical evolutions and nonlinear dynamic behaviors of such multibody system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: The data calculated and obtained by authors are uploaded to the repository “figshare” with the available hyperlink https://figshare.com/articles/data_rar/12519887. Citation information of authors' data is: Wang (2020): data. rar. figshare. Dataset. https://doi.org/10.6084/m9.figshare.12519887.v1].

References

  1. M. Wang, B. Tian, Y. Sun, Z. Zhang, Comput. Math. Appl. 79(3), 576–587 (2020)

    MathSciNet  Google Scholar 

  2. H.M. Yin, B. Tian, X.C. Zhao, Appl. Math. Comput. 368, 124768 (2020)

    MathSciNet  Google Scholar 

  3. S.S. Chen, B. Tian, Y. Sun, C.R. Zhang, Ann. Phys.-Berl. 531(8), 1900011 (2019)

    ADS  Google Scholar 

  4. C.C. Hu, B. Tian, H.M. Yin, C.R. Zhang, Z. Zhang, Comput. Math. Appl. 78(1), 166–177 (2019)

    MathSciNet  Google Scholar 

  5. Z. Du, B. Tian, H.P. Chai, X.H. Zhao, Appl. Math. Lett. 102, 106110 (2020)

    MathSciNet  Google Scholar 

  6. X.X. Du, B. Tian, Q.X. Qu, Y.Q. Yuan, X.H. Zhao, Chaos Solitons Fractals 134, 109709 (2020)

    ADS  MathSciNet  Google Scholar 

  7. C.R. Zhang, B. Tian, Q.X. Qu, L. Liu, H.Y. Tian, Z. Angew, Math. Phys. 71(1), 1–19 (2020)

    Google Scholar 

  8. X.Y. Gao, Appl. Math. Lett. 91, 165–172 (2019)

    MathSciNet  Google Scholar 

  9. X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Math. Lett. 104, 106170 (2020)

    MathSciNet  Google Scholar 

  10. Z. Du, B. Tian et al., Commun. Nonlinear Sci. 67, 49–59 (2019)

    Google Scholar 

  11. L. Liu, B. Tian et al., Phys. Rev. E 97(5), 052217 (2018)

    ADS  MathSciNet  Google Scholar 

  12. Y.Q. Wang et al., Sci. Rep. 8, 16287 (2018)

    ADS  Google Scholar 

  13. J. Su, Y.T. Gao et al., Phys. Rev. E 100(4), 042210 (2019)

    ADS  MathSciNet  Google Scholar 

  14. Y.Q. Wang et al., Nonlinear Dyn. 88(3), 1631–1641 (2017)

    Google Scholar 

  15. X.Y. Jia, B. Tian et al., Eur. Phys. J. Plus 132(11), 488 (2017)

    Google Scholar 

  16. X.H. Zhao, B. Tian et al., Eur. Phys. J. Plus 132(4), 192 (2017)

    Google Scholar 

  17. L. Liu, B. Tian et al., Physica A 492, 524–533 (2018)

    ADS  MathSciNet  Google Scholar 

  18. J. Chai, B. Tian et al., Eur. Phys. J. Plus 132(2), 1–16 (2017)

    Google Scholar 

  19. Y.Q. Wang et al., Commun. Nonlinear Sci. 84, 105164 (2020)

    Google Scholar 

  20. C.C. Ding, Y.T. Gao et al., Eur. Phys. J. Plus 133(10), 406 (2018)

    Google Scholar 

  21. Y.J. Feng, Y.T. Gao et al., Eur. Phys. J. Plus 135(3), 1–12 (2020)

    ADS  Google Scholar 

  22. J.J. Su, Y.T. Gao, Eur. Phys. J. Plus 133(3), 96 (2018)

    Google Scholar 

  23. Y.Q. Wang et al., Nonlinear Dyn. 88(3), 2051–2061 (2017)

    Google Scholar 

  24. W.Q. Hu, Y.T. Gao et al., Eur. Phys. J. Plus 131(11), 390 (2016)

    Google Scholar 

  25. S.J. Chen, W.X. Ma, X. Lü, Commun. Nonlinear Sci. 83, 105135 (2020)

    Google Scholar 

  26. G.F. Deng, Y.T. Gao, J.J. Su et al., Nonlinear Dyn. 99(2), 1039–1052 (2020)

    Google Scholar 

  27. G.F. Deng, Y.T. Gao, Eur. Phys. J. Plus 132(6), 255 (2017)

    Google Scholar 

  28. C.C. Ding, Y.T. Gao et al., Chaos Solitons Fractals 133, 109580 (2020)

    ADS  MathSciNet  Google Scholar 

  29. J.J. Su, Y.T. Gao, Eur. Phys. J. Plus 132(1), 1–9 (2017)

    ADS  Google Scholar 

  30. S.L. Jia, Y.T. Gao et al., Eur. Phys. J. Plus 132(1), 34 (2017)

    Google Scholar 

  31. J.W. Yang, Y.T. Gao et al., Eur. Phys. J. Plus 131(11), 416 (2016)

    Google Scholar 

  32. A.S. Asyikin, M.K. Halimah et al., J. Non-Cryst. Sol. 529, 119777 (2020)

    Google Scholar 

  33. E. Agliari, F. Alemanno et al., Phys. Rev. Lett. 124(2), 028301 (2020)

    ADS  Google Scholar 

  34. J. Jantzi, J.S. Olafsen, Granul. Matter 22(1), 12 (2020)

    Google Scholar 

  35. D.H. Jiang, J. Wang, X.Q. Liang et al., Int. J. Theor. Phys. 59, 436–444 (2020)

    Google Scholar 

  36. T.S. Hatakeyama et al., Phys. Rev. Res. 2(1), 012005 (2020)

    Google Scholar 

  37. H. Teimouri et al., J. Phys. A 48(6), 065001 (2015)

    ADS  MathSciNet  Google Scholar 

  38. D.M. Miedema et al., Phys. Rev. X 7(4), 041037 (2017)

    Google Scholar 

  39. A. Riba et al., Proc. Natl. Acad. Sci. USA 116(30), 15023–15032 (2019)

    Google Scholar 

  40. T. Assiotis, Annales Henri Poincaré 1, 1–32 (2020)

    MathSciNet  Google Scholar 

  41. A. Saenz, Anal. Trends Math. Phys. 741, 133 (2020)

    MathSciNet  Google Scholar 

  42. A. Ayyer et al., J. Stat. Phys. 174(3), 605–621 (2019)

    ADS  MathSciNet  Google Scholar 

  43. Y.Q. Wang et al., Int. J. Mod. Phys. B 33(20), 1950217 (2019)

    ADS  Google Scholar 

  44. Y.Q. Wang et al., Int. J. Mod. Phys. B 33(20), 1950229 (2019)

    ADS  Google Scholar 

  45. Y.Q. Wang et al., Int. J. Mod. Phys. B 33(20), 1950228 (2019)

    ADS  Google Scholar 

  46. Z. Tahiri et al., Int. J. Mod. Phys. C 1, 606 (2020)

    Google Scholar 

  47. Y.Q. Wang et al., Mod. Phys. Lett. B 33(2), 1950012 (2019)

    ADS  Google Scholar 

  48. Q.Y. Hao et al., Phys. Rev. E 98(6), 062111 (2018)

    ADS  Google Scholar 

  49. E. Frey et al., Annal. der Phys. 14(1–3), 20–50 (2005)

    ADS  Google Scholar 

  50. B. Torabi et al., Auton. Agents Multi-Agent Syst. 34(1), 1–24 (2020)

    Google Scholar 

  51. R. Swendsen, An Introduction to Statistical Mechanics and Thermodynamics (Oxford University Press, USA, 2020)

    MATH  Google Scholar 

  52. M. Kantner, J. Comput. Phys. 402, 109091 (2020)

    MathSciNet  Google Scholar 

  53. T. Antal, G.M. Schutz, Phys. Rev. E 62, 83 (2000)

    ADS  Google Scholar 

  54. J.S. Hager et al., Phys. Rev. E 63, 056110 (2001)

    ADS  Google Scholar 

  55. M. Dierl et al., Phys. Rev. Lett. 108, 060603 (2012)

    ADS  Google Scholar 

  56. M. Dierl et al., Phys. Rev. E 87, 062126 (2013)

    ADS  Google Scholar 

  57. A.B. Kolomeisky, J. Phys. A: Math. Gen. 31, 1153 (1998)

    ADS  Google Scholar 

  58. J. Brankov et al., Phys. Rev. E 69, 066128 (2004)

    ADS  Google Scholar 

  59. M.E. Foulaadvand et al., Phys. Rev. E 94, 012304 (2016)

    ADS  Google Scholar 

  60. L. Gomes et al., J. Phys. A 52(36), 365001 (2019)

    MathSciNet  Google Scholar 

  61. T. Midha et al., J. Stat. Mech. 208(4), 043205 (2018)

    MathSciNet  Google Scholar 

  62. T. Midha et al., J. Stat. Phys. 169(4), 824–845 (2017)

    ADS  MathSciNet  Google Scholar 

  63. T. Midha et al., J. Stat. Mech. 2017(7), 073202 (2017)

    MathSciNet  Google Scholar 

  64. T. Midha et al., J. Stat. Mech. 2019(8), 083202 (2019)

    MathSciNet  Google Scholar 

  65. V.S. Kushwaha et al., PLoS ONE 15(2), e0228930 (2020)

    MathSciNet  Google Scholar 

  66. J. Cholewa-Waclaw et al., PNAS 116(30), 14995–15000 (2019)

    Google Scholar 

  67. J. Szavits-Nossan et al., bioRxiv 719302 (2020)

  68. A. Riba et al., PNAS 116(30), 15023–15032 (2019)

    Google Scholar 

Download references

Acknowledgements

The research is under the support of National Natural Science Foundation of China (Grant No. 11705042), China Postdoctoral Science Foundation (Grant Nos. 2018T110040, 2016M590041), Fundamental Research Funds for the Central Universities (Grant No. JZ2018HGTB0238), Curriculum Planning and Design Research Project (Grant No. 102-033119) and Teaching Quality and Teaching Reform Project (Grant No. JYQZ1815). Prof. Yu-Qing Wang and Dr. Chang Xu made equal contributions to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YQ., Xu, C. Cluster dynamics in the open-boundary heterogeneous ASEPs coupled with interacting energies. Eur. Phys. J. Plus 135, 518 (2020). https://doi.org/10.1140/epjp/s13360-020-00495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00495-5

Navigation