Skip to main content
Log in

Synchrotron micro-XRD study, the way toward a deeper characterizing the early prehistoric Iranian glass cylinders from Late Bronze Age (1280 BC)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, the chemical and mineralogical composition of a unique glass cylinder obtained from the temple of Chogha-Zanbil and classified as the earliest glass discovered in Iran (2nd millennium BC) has been studied. This was achieved through the use of Fourier transform infrared spectroscopy, environmental scanning electron microscope and synchrotron X-ray micro-diffraction to characterize the presence of microstructures and the distribution of elements within their matrices. In order to accurately determine the characteristic crystalline phase constituents, micro-X-ray diffraction experiments were carried out at the CELLS-ALBA Synchrotron. Results reveal that the glass samples are comprised of silica glass and contain calcite, quartz and gehlenite as the major phases. The presence of argentojarosite as the Ag-bearing mineral within the amorphous part of glasses highlights the first use of Ag (Late Bronze Age) in Iran. The novelty of the results includes the identification of specific minerals (i.e., silver-containing minerals) used in the production of glass cylinders to obtain better luster and produce iridescence effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available in the Mohammadamin Emami repository, DOI : https://doi.org/10.1140/epjp/s13360-020-00486-6.].

References

  1. E. Gliozzo, M. Turchiano, F. Giannetti, I. Memmi, Archaeometry 58, 113 (2016)

    Article  Google Scholar 

  2. L. Dussubieux, C.M. Kusimba, V. Gogte, S.B. Kusimba, B. Gratuze, R. Oka, Archaeometry 50(5), 797 (2008)

    Article  Google Scholar 

  3. M. Emami, S. Nekouei, H. Ahmadi, C. Pritzel, R. Trettin, Int. J. Appl. Glass Sci. 7(1), 59 (2016)

    Article  Google Scholar 

  4. J. Henderson, Acc. Chem. Res. 35(8), 594 (2002)

    Article  Google Scholar 

  5. I. Freestone, Looking into glass, in Science and the Past, ed. by S. Bowman (De Gruyter, 1991), pp. 37–56

  6. A. Cholakova, T. Rehren, I.C. Freestone, J. Archaeol. Sci. Rep. 7, 625 (2016)

    Google Scholar 

  7. D. Brems, P. Degryse, Archaeometry 56, 116 (2014)

    Article  Google Scholar 

  8. S.C. Rasmussen, How Glass Changed the World (Springer, Berlin, 2012), p. 11

    Book  Google Scholar 

  9. J. Henderson, Oxf. J. Archaeol. 4(3), 267 (1985)

    Article  Google Scholar 

  10. T. Rehren, J. Archaeol. Sci. 38(12), 3694 (2011)

    Article  Google Scholar 

  11. R.H. Brill, B.A. Rising, in Chemical Analyses of Early Glasses. Vol. 1: Catalogue of Samples. Vol. 2: Tables (The Corning Museum of Glass, Corning, New York, 1999)

  12. I. Freestone, in Early Vitreous, Materials, vol. 56, ed. by M. B. a. I. F. (British Museum Occasional Paper, 1987), pp. 173

  13. R. Ghirshman, Archaeology 8(4), 260 (1955)

    Google Scholar 

  14. J. Henderson, Archaeometry 30(1), 77 (1988)

    Article  Google Scholar 

  15. J. Rius, A. Labrador, A. Crespi, C. Frontera, O. Vallcorba, J.C. Melgarejo, J. Synchrotron Radiat. 18(6), 891 (2011)

    Article  Google Scholar 

  16. F. Fauth, I. Peral, C. Popescu, M. Knapp, Powder Diffr. 28(S2), S360 (2013)

    Article  ADS  Google Scholar 

  17. S. Quartieri, Synchrotron Radiation (Springer, Berlin, 2015), p. 677

    Google Scholar 

  18. L. Bertrand, Methodological developments and support for synchrotron investigation in cultural heritage and archaeology, in Trends of Synchrotron Radiation Applications in Cultural Heritage, Forensics and Materials Science: Proceeding of a Technical Meeting, International Atomic Energy Agency, ISSN 1011–4289; no. 1803 (2016), pp. 48–60

  19. M. Castro, F. Pereira, A. Aller, D. Littlejohn, Atmos. Environ. 98, 41 (2014)

    Article  ADS  Google Scholar 

  20. A. Banerjee, Zeitschrift für Naturforschung A 48(5–6), 741 (1993)

    Article  ADS  Google Scholar 

  21. J. Shuster, F. Reith, M.R. Izawa, R.L. Flemming, N.R. Banerjee, G. Southam, Minerals 7(11), 218 (2017)

    Article  Google Scholar 

  22. J. Molera, T. Pradell, N. Salvadó, M. Vendrell-Saz, J. Am. Ceram. Soc. 82(10), 2871 (1999)

    Article  Google Scholar 

  23. R. Di Febo, J. Molera, T. Pradell, O. Vallcorba, J.C. Melgarejo, C. Capelli, Eur. J. Mineral. 29(5), 861 (2017)

    Article  Google Scholar 

  24. T. Pradell, J. Molera, N. Salvadó, A. Labrador, Appl. Phys. A 99(2), 407 (2010)

    Article  ADS  Google Scholar 

  25. G. Harbottle, B. Gordon, K. Jones, Nucl. Instrum. Methods Phys. Res. Sect. B 14(1), 116 (1986)

    Article  ADS  Google Scholar 

  26. M. Cotte, M. Radepont, E. Pouyet, M. Salome, and J. Susini, Synchrotron-based X ray and FTIR micro-spectroscopy for the cultural heritage science at the ID21 beamline, ESRF, in Proceeding of a Technical Meeting, International Atomic Energy Agency, ISSN 1011–4289; no. 1803 (2016) pp. 60–672

  27. L. Maritan, L. Casas, A. Crespi, E. Gravagna, J. Rius, O. Vallcorba, D. Usai, Herit. Sci. 6(1), 74 (2018)

    Article  Google Scholar 

  28. M. Maggetti, C. Neururer, D. Ramseyer, Appl. Clay Sci. 53(3), 500 (2011)

    Article  Google Scholar 

  29. T. Pradell, J. Molera, G. Molina, M.S. Tite, Appl. Clay Sci. 82, 106 (2013)

    Article  Google Scholar 

  30. T. Pradell, G. Molina, S. Murcia, R. Ibáñez, C. Liu, J. Molera, A.J. Shortland, Int. J. Appl. Glass Sci. 7(1), 41 (2016)

    Article  Google Scholar 

  31. J. Dutrizac, Metall. Trans. B 14(4), 531 (1983)

    Article  Google Scholar 

  32. R.B. Heimann, M. Maggetti, Scientific Studies in Ancient Ceramics, vol. 19 (British Museum Research Laboratory, London, 1981), p. 163

    Google Scholar 

Download references

Acknowledgements

This work was funded by proposal ID 2017062250 at BL04-MSPD beamline, ALBA, Spain. This research has also been financially supported by the Ministry of Science, Research and Technology, and the Institute for Research in Fundamental Sciences (IPM), Tehran, Iran, in collaboration with ALBA Synchrotron, Barcelona, Spain. This project has been run and supported by Horizon 2020. The authors are sincerely thankful to the beamline scientists at BL04 – MSPD in ALBA synchrotron. Special thanks are expressed to Prof. Miguel Aranda, the scientific director of ALBA, for all his collaboration and help in this project. The authors gratefully appreciate Prof. Gabriela Krist, Universität für angewandte Kunst Wien/University of Applied Arts, Vienna, for allowing the corresponding author to cooperate with her department. Finally, we would like to thank two anonymous reviewers for their constructive comments to our manuscript, which helped to improve the final version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadamin Emami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, M., Rozatian, A.S.H., Vallcorba, O. et al. Synchrotron micro-XRD study, the way toward a deeper characterizing the early prehistoric Iranian glass cylinders from Late Bronze Age (1280 BC). Eur. Phys. J. Plus 135, 487 (2020). https://doi.org/10.1140/epjp/s13360-020-00486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00486-6

Navigation