Skip to main content

An oversimplified picture of the climate behavior based on a single process can lead to distorted conclusions

An Erratum to this article was published on 17 May 2021

This article has been updated


The nature of the climate system is reviewed. We then review the history of scientific approaches to major problems in climate, noting that the centrality of the contribution of carbon dioxide is relatively recent, and probably inappropriate to much of the Earth’s climate history. The weakness of characterizing the overall climate behavior using only one physical process, globally averaged radiative forcing, is illustrated by considering the role of an equally well-known process, meridional heat transport by hydrodynamic processes which, by changing the equator-to-pole temperature difference, also impact global mean temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Change history


  1. 1.

    William Nierenberg.

  2. 2.

    Lennard Bengtsson.

  3. 3.

    Aksel Wiin-Nielsen.

  4. 4.

    Hubert Lamb.

  5. 5.

    Basil John Mason.

  6. 6.

    Frederick Seitz.

  7. 7.

    Mikhail Budyko, Yuri Izrael and Kiril Kondratiev.


  1. 1.

    IPCC SR15 (2018),

  2. 2.

    J.S. Boyle, Upper level atmospheric stationary waves in the twentieth century climate of the Intergovernmental Panel on Climate Change simulations. J. Geophys. Res. 111, D14101 (2006).

    Article  ADS  Google Scholar 

  3. 3.

    K.E. Trenberth, J.T. Fasullo, J. Kiehl, Earth's global energy budget. Bull. Am. Meteorol. Soc. 90(3), 311–323 (2009).

    Article  ADS  Google Scholar 

  4. 4.

    R. Rondanelli, R.S. Lindzen, Can thin cirrus clouds in the tropics provide a solution to the faint young Sun paradox? J. Geophys. Res. 115, D02108 (2010).

    Article  ADS  Google Scholar 

  5. 5.

    R.L. Pfeffer (ed.), Dynamics of Climate: The Proceedings of a Conference on the Application of Numerical Integration Techniques to the Problem of the General Circulation held October 26–28, 1955 (Pergamon Press, Oxford, 1960), p. 154

    Google Scholar 

  6. 6.

    J.S. Callendar, The artificial production of carbon dioxide and its influence on temperature. Proc. R. Met. Soc. (1938).

    Article  Google Scholar 

  7. 7.

    J. Imbrie, K.P. Imbrie, Ice Ages: Solving the Mystery (Macmillan, London, 1979), p. 244

    Book  Google Scholar 

  8. 8.

    N. Shackleton, A. Boersma, The climate of the Eocene ocean. J. Geol. Soc. Lond. 138, 153–157 (1981)

    Article  Google Scholar 

  9. 9.

    CLIMAP Project Members, The surface of the ice-age earth. Science 191(4232), 1131–1137 (1976).

    Article  ADS  Google Scholar 

  10. 10.

    P.N. Pearson, B.E. van Dongen, C.J. Nicholas, R.D. Pancost, S. Schouten, J.M. Singano, B.S. Wade, Stable warm tropical climate through the Eocene Epoch. Geology 35(3), 211–214 (2007).

    Article  ADS  Google Scholar 

  11. 11.

    M. Milankovitch, Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeiten-problem (R. Serbian Acad, Belgrade, 1941)

    Google Scholar 

  12. 12.

    G. Roe, In defense of Milankovitch. Geophys. Res. Lett. (2006).

    Article  Google Scholar 

  13. 13.

    R.S. Edvardsson, K.G. Karlsson, M. Engholmoe, Accurate spin axes and solar system dynamics: climatic variations for the Earth and Mars. Astron. Astrophys. 384, 689–701 (2002).

    Article  ADS  Google Scholar 

  14. 14.

    W.F. Ruddiman, Ice-driven CO2 feedback on ice volume. Clim. Past 2, 43–55 (2006)

    Article  Google Scholar 

  15. 15.

    G. Genthon, J.M. Barnola, D. Raynaud, C. Lorius, J. Jouzel, N.I. Barkov, Y.S. Korotkevich, V.M. Kotlyakov, Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature 329, 414–418 (1987)

    Article  ADS  Google Scholar 

  16. 16.

    IPCC AR5-Box 5.1 (2013),

  17. 17.

    A. Abe-Ouchi, F. Saito, K. Kawamura et al., Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–193 (2013).

    Article  ADS  Google Scholar 

  18. 18.

    A. Ganopolski, V. Brovkin, Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity. Clim Past 13, 1695–1716 (2017)

    Article  Google Scholar 

  19. 19.

    Lindzen, R.S. (2019),

  20. 20.

    C. Sagan, G. Mullen, Earth and Mars: evolution of atmospheres and surface temperatures. Science 177(4043), 52–56 (1972)

    Article  ADS  Google Scholar 

  21. 21.

    R.S. Lindzen, M.-D. Chou, A.Y. Hou, Does the Earth have an adaptive infrared iris? Bull. Am. Meteorol. Soc. 82(3), 417–432 (2001)

    Article  ADS  Google Scholar 

  22. 22.

    J.R. Holton, G.J. Hakim, An Introduction to Dynamic Meteorology (Academic Press, Cambridge, 2012), p. 552

    Google Scholar 

  23. 23.

    Lindzen, R.S. (1990). Dynamics in Atmospheric Physics, Cambridge Univ. Press, 324 pages

  24. 24.

    J. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin, 1992), p. 710

    Google Scholar 

  25. 25.

    R.S. Lindzen, B. Farrell, The role of polar regions in global climate, and the parameterization of global heat transport. Mon. Weather Rev. 108, 2064–2079 (1980)

    Article  ADS  Google Scholar 

  26. 26.

    I.M. Held, M. Suarez, A two-level primitive equation atmospheric model designed for climatic sensitivity experiments. J. Atmos. Sci. 35, 206–229 (1978)

    Article  ADS  Google Scholar 

  27. 27.

    M. Jansen, R. Ferarri, equilibration of an atmosphere by adiabatic eddy fluxes. J. Atmos. Sci. (2013).

    Article  Google Scholar 

  28. 28.

    R.E. Newell, J.W. Kidson, D.G. Vincent, G.J. Boer, The Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes, vol. 1 (M.I.T. Press, Cambridge, 1972)

    Google Scholar 

  29. 29.

    M. Holland, C.M. Bitz, Polar amplification of climate change in coupled models. Clim. Dyn. 21, 221–232 (2003).

    Article  Google Scholar 

  30. 30.

    M.I. Lee, M.J. Suarez, I.S. Kang, I.M.A. Held, D. Kim, A moist benchmark calculation for the atmospheric general circulation models. J. Clim. 21, 4934–4954 (2008).

    Article  ADS  Google Scholar 

  31. 31.

    E.J. Barron, W.M. Washington, Warm cretaceous climates: high atmospheric CO2 as a plausible mechanism in the carbon cycle and atmospheric CO2, in Natural Variations Archean to Present, ed. by E.T. Sundquist, W.S. Broecker (American Geophysical Union, Washington, 1985).

    Chapter  Google Scholar 

  32. 32.

    M. Huber, L.C. Sloan, Warm climate transitions: a general circulation modeling study of the Late Paleocene thermal maximum (about 56 Ma). J. Geophys. Res. Atmos. 104, 16633–16655 (1999).

    Article  ADS  Google Scholar 

  33. 33.

    I.M. Held, A.Y. Hou, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. (1980).;2

    MathSciNet  Article  Google Scholar 

Download references


The author’s research is currently completely self-funded, though prior to 2009, there was support from the Department of Energy.

Author information



Corresponding author

Correspondence to Richard S. Lindzen.

Additional information

The original online version of this article was revised: In the original published article the references have been ordered alphabetically by mistake.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lindzen, R.S. An oversimplified picture of the climate behavior based on a single process can lead to distorted conclusions. Eur. Phys. J. Plus 135, 462 (2020).

Download citation