Skip to main content
Log in

Simple quantum graphs proposal for quantum devices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The control of the quantum transport is an issue of current interest for the construction of new devices. In this work, we investigate this possibility in the realm of quantum graphs. The study allows the identification of two distinct periodic quantum effects which are related to quantum complexity, one being the identification of transport inefficiency, and the other the presence of peaks of full transmission inside regions of suppression of transport in some elementary arrangements of graphs. Motivated by the power of quantum graphs, we elaborate on the construction of simple devices, based on microwave and optical fibers networks, and also on quantum dots, nanowires and nanorings. The elementary devices can be used to construct composed structures with important quantum properties, which may be used to manipulate the quantum transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Pauling, J. Chem. Phys. 4, 673 (1936). https://doi.org/10.1063/1.1749766

    Article  ADS  Google Scholar 

  2. T. Kottos, U. Smilansky, Ann. Phys. (NY) 274, 76 (1999). https://doi.org/10.1006/aphy.1999.5904

    Article  ADS  Google Scholar 

  3. S. Gnutzmann, U. Smilansky, Adv. Phys. 55, 527 (2006). https://doi.org/10.1080/00018730600908042

    Article  ADS  Google Scholar 

  4. O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, L. Sirko, Phys. Rev. E 69(5), 056205 (2004). https://doi.org/10.1103/PhysRevE.69.056205

    Article  ADS  Google Scholar 

  5. K.A. Dick, K. Deppert, M.W. Larsson, T. Mårtensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Nat. Mater. 3(6), 380 (2004). https://doi.org/10.1038/nmat1133

    Article  ADS  Google Scholar 

  6. K. Heo, E. Cho, J.E. Yang, M.H. Kim, M. Lee, B.Y. Lee, S.G. Kwon, M.S. Lee, M.H. Jo, H.J. Choi, T. Hyeon, S. Hong, Nano Lett. 8(12), 4523 (2008). https://doi.org/10.1021/nl802570m

    Article  ADS  Google Scholar 

  7. G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs (American Mathematical Society, Providence, 2012)

    Book  Google Scholar 

  8. M. Ławniczak, J. Lipovský, L. Sirko, Phys. Rev. Lett. 122(14), 140503 (2019). https://doi.org/10.1103/physrevlett.122.140503

    Article  Google Scholar 

  9. S. Lepri, C. Trono, G. Giacomelli, Phys. Rev. Lett. 118(12), 123901 (2017). https://doi.org/10.1103/physrevlett.118.123901

    Article  ADS  Google Scholar 

  10. G. Giacomelli, S. Lepri, C. Trono, Phys. Rev. A 99(2), 023841 (2019). https://doi.org/10.1103/physreva.99.023841

    Article  ADS  Google Scholar 

  11. M. Ahmed, G. Gradoni, S. Creagh, C. Smartt, S. Greedy, G. Tanner, in 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA) (IEEE, 2019), p. 1231. https://doi.org/10.1109/iceaa.2019.8879059

  12. M. Ahmed, G. Gradoni, S. Creagh, C. Smartt, S. Greedy, G. Tanner, in 2019 International Symposium on Electromagnetic Compatibility—EMC EUROPE (IEEE, 2019), p. 820. https://doi.org/10.1109/emceurope.2019.8871973

  13. A.G.M. Schmidt, B.K. Cheng, M.G.E. da Luz, J. Phys. A 36, L545 (2003). https://doi.org/10.1088/0305-4470/36/42/L01

    Article  Google Scholar 

  14. F.M. Andrade, A.G.M. Schmidt, E. Vicentini, B.K. Cheng, M.G.E. da Luz, Phys. Rep. 647, 1 (2016). https://doi.org/10.1016/j.physrep.2016.07.001

    Article  ADS  MathSciNet  Google Scholar 

  15. F.M. Andrade, S. Severini, Phys. Rev. A 98(6), 062107 (2018). https://doi.org/10.1103/physreva.98.062107

    Article  ADS  Google Scholar 

  16. A. Drinko, F.M. Andrade, D. Bazeia, Phys. Rev. A 100(6), 062117 (2019). https://doi.org/10.1103/physreva.100.062117

    Article  ADS  Google Scholar 

  17. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mančal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Nature 446(7137), 782 (2007). https://doi.org/10.1038/nature05678

    Article  ADS  Google Scholar 

  18. N. Lambert, Y.N. Chen, Y.C. Cheng, C.M. Li, G.Y. Chen, F. Nori, Nat. Phys. 9(1), 10 (2012). https://doi.org/10.1038/nphys2474

    Article  Google Scholar 

  19. P. Gehring, J.M. Thijssen, H.S.J. van der Zant, Nat. Rev. Phys. 1(6), 381 (2019). https://doi.org/10.1038/s42254-019-0055-1

    Article  Google Scholar 

  20. V. Kostrykin, R. Schrader, J. Phys. A 32(4), 595 (1999). https://doi.org/10.1088/0305-4470/32/4/006

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Kempe, Probab. Theory Relat. Fields 133, 215 (2005). https://doi.org/10.1007/s00440-004-0423-2

    Article  Google Scholar 

  22. J. Kempe, Contemp. Phys. 44, 307 (2003). https://doi.org/10.1080/00107151031000110776

    Article  ADS  Google Scholar 

  23. E. Feldman, M. Hillery, Phys. Lett. A 324, 277 (2004). https://doi.org/10.1016/j.physleta.2004.03.005

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Feldman, M. Hillery, in Coding Theory and Quantum Computing, Contemporary Mathematics, vol. 381, ed. by D. Evans, J. Holt, C. Jones, K. Klintworth, B. Parshall, O. Pfister, H. Ward (2005), Contemporary Mathematics, vol. 381, p. 71

  25. G.K. Tanner, in Non-Linear Dynamics and Fundamental Interactions, vol. 213 (Springer-Verlag, 2006), chap. From quantum graphs to quantum random walks, pp. 69–87. https://doi.org/10.1007/1-4020-3949-2_6

  26. F.M. Andrade, M.G.E. da Luz, Phys. Rev. A 84(4), 042343 (2011). https://doi.org/10.1103/PhysRevA.84.042343

    Article  ADS  Google Scholar 

  27. O. Hul, M. Ławniczak, S. Bauch, A. Sawicki, M. Kuś, L. Sirko, Phys. Rev. Lett. 109(4), 040402 (2012). https://doi.org/10.1103/physrevlett.109.040402

    Article  ADS  Google Scholar 

  28. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57(1), 120 (1998). https://doi.org/10.1103/physreva.57.120

    Article  ADS  Google Scholar 

  29. T. Uchida, M. Jo, A. Tsurumaki-Fukuchi, M. Arita, A. Fujiwara, Y. Takahashi, AIP Adv. 5(11), 117144 (2015). https://doi.org/10.1063/1.4936563

    Article  ADS  Google Scholar 

  30. J.E. Saldaña, A. Vekris, G. Steffensen, R. Žitko, P. Krogstrup, J. Paaske, K. Grove-Rasmussen, J. Nygård, Phys. Rev. Lett. 121(25), 257701 (2018). https://doi.org/10.1103/physrevlett.121.257701

    Article  ADS  Google Scholar 

  31. A.L.R. Barbosa, D. Bazeia, J.G.G.S. Ramos, Phys. Rev. E 90(4), 042915 (2014). https://doi.org/10.1103/physreve.90.042915

    Article  ADS  Google Scholar 

  32. X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science 303(5662), 1348 (2004). https://doi.org/10.1126/science.1092356

    Article  ADS  Google Scholar 

  33. F. Martins, B. Hackens, M.G. Pala, T. Ouisse, H. Sellier, X. Wallart, S. Bollaert, A. Cappy, J. Chevrier, V. Bayot, S. Huant, Phys. Rev. Lett. 99(13), 136807 (2007). https://doi.org/10.1103/physrevlett.99.136807

    Article  ADS  Google Scholar 

  34. B. Hackens, F. Martins, T. Ouisse, H. Sellier, S. Bollaert, X. Wallart, A. Cappy, J. Chevrier, V. Bayot, S. Huant, Nat. Phys. 2(12), 826 (2006). https://doi.org/10.1038/nphys459

    Article  Google Scholar 

  35. M.G. Pala, S. Baltazar, P. Liu, H. Sellier, B. Hackens, F. Martins, V. Bayot, X. Wallart, L. Desplanque, S. Huant, Phys. Rev. Lett. 108(7), 076802 (2012). https://doi.org/10.1103/physrevlett.108.076802

    Article  ADS  Google Scholar 

  36. A.A. Sousa, A. Chaves, G.A. Farias, F.M. Peeters, Phys. Rev. B 88(24), 245417 (2013). https://doi.org/10.1103/physrevb.88.245417

    Article  ADS  Google Scholar 

  37. N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M.A. Ratner, A. Nitzan, J.F. Stoddart, X. Guo, Nat. Rev. Phys. 1(3), 211 (2019). https://doi.org/10.1038/s42254-019-0022-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Araucária (FAPPR, Grant 09/2016), Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), and Paraiba State Research Foundation (FAPESQ-PB, Grant 0015/2019). It was also financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001). FMA and DB also acknowledge CNPq Grants 313274/2017-7 (FMA), 434134/2018-0 (FMA), 306614/2014-6 (DB) and 404913/2018-0 (DB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drinko, A., Andrade, F.M. & Bazeia, D. Simple quantum graphs proposal for quantum devices. Eur. Phys. J. Plus 135, 451 (2020). https://doi.org/10.1140/epjp/s13360-020-00459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00459-9

Navigation