Skip to main content

Advertisement

Log in

Producing actionable climate change information for regions: the distillation paradigm and the 3R framework

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The issue of the distillation of actionable climate change information for application to vulnerability, impacts and adaptation studies in support of climate service activities (or VIA-CS) at regional to local scales is revisited. The 3R approach is introduced: robustness, reliability and relevance. Climate information for regions needs to be robust in the sense of producing statistically significant and consistent change signals based on multimodel and multimethod ensembles; it needs to be reliable in the sense of being based on a good understanding of the physical processes underlying the change signals, and on models capable of reproducing the functioning of the climate system at different scales; it needs to be relevant in the sense of providing information targeted for use in VIA-CS applications, including a proper characterization of uncertainties based on probabilistic approaches. It is advocated that the distillation problem requires an interdisciplinary consensus approach and a new generation of scientists acting at the interface between the climate modelling and end-user communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Buizza, M. Leutbecher, The forecast skill horizon. Q. J. R. Meteorol. Soc. (2015). https://doi.org/10.1002/qj.2619

    Article  Google Scholar 

  2. E.K.M. Chang, Y. Guo, X. Xia, CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. 117, D23118 (2012). https://doi.org/10.1029/2012JD018578

    Article  ADS  Google Scholar 

  3. M. Chen et al., Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 113, D04110 (2008)

    ADS  Google Scholar 

  4. E. Coppola et al., A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim. Dyn. 1, 2 (2019). https://doi.org/10.1007/s00382-018-4521-8

    Article  Google Scholar 

  5. M. Deque et al., An intercomparison of regional climate simulations for Europe. Assessing uncertainties in model projections. Clim. Change 81, 53–70 (2007)

    Google Scholar 

  6. V. Eyring et al., Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016)

    ADS  Google Scholar 

  7. G. Flato et al., Evaluation of climate models, in Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (IPCC), ed by T.F. Stocker, et al. (Cambridge University Press, Cambridge, U.K., 2013), pp. 741–866

  8. X.J. Gao, J.S. Pal, F. Giorgi, Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulations. Geophys. Res. Lett. 33, L03706 (2006)

    ADS  Google Scholar 

  9. N.P. Gillett, Weighting climate model projections using observational constraints. Phil. Trans. R. Soc. A 373, 20140425 (2015). https://doi.org/10.1098/rsta.2014.0425

    Article  ADS  Google Scholar 

  10. F. Giorgi, Dependence of surface climate interannual variability on spatial scale. Geophys. Res. Lett. 29, 2101 (2002)

    ADS  Google Scholar 

  11. F. Giorgi, Climate change prediction. Clim. Change 73, 239–265 (2005)

    ADS  Google Scholar 

  12. F. Giorgi, Thirty years of regional climate modeling: where are we and where are we going next? J. Geophys. Res. Atmos. 124, 5696–5723 (2019)

    ADS  Google Scholar 

  13. F. Giorgi, L.O. Mearns, Approaches to the simulation of regional climate change: a review. Rev. Geophys. 29, 191–216 (1991)

    ADS  Google Scholar 

  14. F. Giorgi, L.O. Mearns, Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging (REA)” method. J. Clim. 15, 1141–1158 (2002)

    ADS  Google Scholar 

  15. F. Giorgi, E. Coppola, European climate change oscillation (ECO). Geophys. Res. Lett. (2007). https://doi.org/10.1029/2007GL031223

    Article  Google Scholar 

  16. F. Giorgi, P. Lionello, Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008)

    ADS  Google Scholar 

  17. F. Giorgi et al., Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophys. Res. Lett. 28, 3317–3320 (2001)

    ADS  Google Scholar 

  18. F. Giorgi, W.L. Gutowski, Regional dynamical downscaling and the CORDEX initiative. Ann. Rev. Environ. Res. 40, 467–490 (2015)

    Google Scholar 

  19. F. Giorgi, J.W. Hurrell, M.R. Marinucci, M. Beniston, Elevation dependency of the surface climate change signal. J. Clim. 10, 288–296 (1997)

    ADS  Google Scholar 

  20. F. Giorgi, C. Jones, G. Asrar, Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull. 58, 175–183 (2009)

    Google Scholar 

  21. F. Giorgi et al., Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat. Geosci. 9, 584–589 (2016)

    ADS  Google Scholar 

  22. W.J. Gutowski et al., WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP to CMIP6. Geosci. Model Dev. 9, 4087–4095 (2016)

    ADS  Google Scholar 

  23. I. Harris, P.D. Jones, T.J. Osborn, D.H. Lister, Updated high resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. (2013). https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  24. E. Hawkins, R. Sutton, The potential to narrow uncertainty in regional climate projections. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009)

    ADS  Google Scholar 

  25. B.C. Hewitson, R.G. Crane, Climate downscaling: techniques and applications. Clim. Res. 7, 85–95 (1996)

    Google Scholar 

  26. B.C. Hewitson, J. Daron, R.G. Crane, M.F. Zermoglio, C. Jack, Interrogating empirical-statistical downscaling. Clim. Change 122, 539–554 (2014)

    ADS  Google Scholar 

  27. B.C. Hewitson, K. Waagsaether, J. Wohland, K. Kloppers, T. Kara, Climate information websites: an evolving landscape. WIREs Clim. Change 8, e470 (2017). https://doi.org/10.1002/wcc.470

    Article  Google Scholar 

  28. Intergovernmental Panel on Climate Change (IPCC), The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (IPCC), ed by T.F. Stocker, et al. (Cambridge University Press, Cambridge, U.K., 2013), pp. 741–866

  29. F.A. Isotta et al., The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol. 34, 1657–1675 (2014)

    Google Scholar 

  30. D. Jacob et al., EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2013)

    Google Scholar 

  31. R. Knutti, The end of model democracy? An editorial comment. Clim. Change 102, 395–404 (2010)

    ADS  Google Scholar 

  32. R. Knutti et al., A climate model projection weighting scheme accounting for performance and independence. Geophys. Res. Lett. 44, 1909–1918 (2017)

    ADS  Google Scholar 

  33. R. Laprise, Regional climate modeling. J. Comput. Phys. 227, 3641–3666 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  34. D.R. Legates, C.J. Willmott, mean seasonal and spatial variability in gauge-corrected global precipitation. Int. J. Climatol. 10, 111–127 (1990)

    Google Scholar 

  35. E.N. Lorenz, On the existence of extended range predictability. J. Appl. Meteorol. 12, 543–546 (1973)

    ADS  Google Scholar 

  36. N. Massey et al., Weather@home - development and validation of a very large ensemble modeling system for probabilistic event attribution. Q. J. R. Meteorol. Soc. 141, 1528–1545 (2015)

    ADS  Google Scholar 

  37. L.O. Mearns, I. Bogardi, F. Giorgi, I. Matyakovszky, M. Pilecki, Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling. J. Geophys. Res. 104, 6603–6621 (1999)

    ADS  Google Scholar 

  38. L.O. Mearns et al., Guideline for use of climate scenarios developed from regional climate model experiments. Report of the Data Distribution Center (DDC) of the IPCC (2003), 38 p

  39. G.A. Meehl et al., Decadal climate prediction. An update from the trenches. Bull. Am. Meteorol. Soc. (2014). https://doi.org/10.1175/BAMS-D-12-00241.1

    Article  Google Scholar 

  40. R.H. Moss et al., The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010)

    ADS  Google Scholar 

  41. B.C. O’Neill et al., A new scenario framework for climate change research: the concept of shared socio-economic pathways. Clim. Change 122, 387–400 (2014)

    ADS  Google Scholar 

  42. B. Onol, Effects of coastal topography on climate: high resolution simulation with a regional climate model. Clim. Res. 52, 152–174 (2013)

    Google Scholar 

  43. T.N. Palmer, F.J. Doblas-Reyes, A. Weisheimer, M.J. Rodwell, Towards seemless prediction: calibration of climate change projections using seasonal forecasts. Bull. Am. Meteorol. Soc. 89, 459–470 (2008)

    ADS  Google Scholar 

  44. H. Paeth et al., Progress in regional downscaling of West Africa precipitation. Atmos. Sci. Lett. 12, 75–82 (2011)

    ADS  Google Scholar 

  45. N. Pepin et al., Elevation-dependent warming in mountain regions of the World. Nat. Clim. Change 5, 424–430 (2015)

    ADS  Google Scholar 

  46. A.F. Prein, A. Gobiet, Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol. 37, 305–327 (2017)

    Google Scholar 

  47. A.F. Prein et al., A review on regional convection permitting regional climate modeling: demonstrations, prospects and challenges. Rev. Geophys. 53, 323–361 (2015)

    ADS  Google Scholar 

  48. C. Piani, J.O. Haerter, E. Coppola, Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 99, 187–192 (2010)

    ADS  Google Scholar 

  49. M. Rummukainen, State-of-the-art with regional climate models. WIREs Clim Change 1, 82–96 (2010)

    Google Scholar 

  50. K.T. Taylor, R.J. Stouffer, G.E. Meehl, An overview of CMIP5 and experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012)

    ADS  Google Scholar 

  51. C. Tebaldi, J.M. Arblaster, Pattern scaling: its strengths and limitations, and an update on the latest model simulations. Clim. Change 122, 459–471 (2014)

    ADS  Google Scholar 

  52. C. Teutschbein, J. Seibert, Bias correction of regional climate model simulations for hydrological climate change impact studies: review and evaluation of different methods. J. Hydrol. 456–457, 12–29 (2012)

    Google Scholar 

  53. S.W. Yeh et al., ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018)

    ADS  Google Scholar 

  54. I.G. Watterson, Calculation of probability density functions for temperature and precipitation change under global warming. J. Geophys. Res. Atmos 113, D12106 (2008). https://doi.org/10.1029/2007jd009254

    Article  ADS  Google Scholar 

  55. R.L. Wilby et al., Statistical downscaling of general circulation model output: a comparison of methods. Water Res. Res. 34, 2995–3008 (1998)

    ADS  Google Scholar 

  56. R.L. Wilby et al., Guidelines for use of climate scenarios developed from statistical downscaling methods. Report of the Data Distribution Center (DDC) of the IPCC (2004), 27 p

  57. J.W. Williams, S.T. Jackson, J.E. Kutzbach, Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U.S.A. 104, 5738–5742 (2007)

    ADS  Google Scholar 

  58. G. Zappa, T.G. Shepherd, Storylines of atmospheric circulation change for European regional climate impact assessment. J. Clim. 30, 6561–6577 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank F. Raffaele for help in producing some of the figures in this paper. The data used in this work can be found in the following websites: http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html (CMIP5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Giorgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgi, F. Producing actionable climate change information for regions: the distillation paradigm and the 3R framework. Eur. Phys. J. Plus 135, 435 (2020). https://doi.org/10.1140/epjp/s13360-020-00453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00453-1

Navigation