Skip to main content
Log in

Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present study is related to the design of a new mathematical model based on the Lane–Emden pantograph delay differential equation. The new model is obtained by using the sense of delay differential equation and standard Lane–Emden second-order equation. For the numerical solutions of the designed model, a well-known Bernoulli collocation method is implemented. In order to check the perfection and exactness of the designed model, three different nonlinear examples have been solved by using the Bernoulli collocation scheme. Furthermore, the comparison of the numerical results obtained by the Bernoulli collocation scheme with the exact solutions is also presented. Moreover, some numerical tables and the graphs of absolute error are plotted using different values of N for all problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Y. Kuang (ed.), Delay Differential Equations: With Applications in Population Dynamics, vol. 191 (Academic Press, Boca Raton, 1993)

    MATH  Google Scholar 

  2. D.S. Li, M.Z. Liu, Exact solution properties of a multi-pantograph delay differential equation. J. Harbin Inst. Technol. 32(3), 1–3 (2000)

    MathSciNet  MATH  Google Scholar 

  3. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, Ultrafast all-optical graphene modulator. Nano Lett. 14(2), 955–959 (2014)

    Article  ADS  Google Scholar 

  4. S.I. Niculescu, Delay Effects on Stability: A Robust Control Approach, vol. 269 (Springer, New York, 2001)

    MATH  Google Scholar 

  5. J.E. Forde, Delay Differential Equation Models in Mathematical Biology (University of Michigan, Ann Arbor, 2005), p. 5436

    Google Scholar 

  6. E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33(5), 1144–1165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. M.W. Frazier, Background: complex numbers and linear algebra, in An Introduction to Wavelets through Linear Algebra, ed. by C.K. Chui (Springer, New York, 1999), pp. 7–100

    MATH  Google Scholar 

  8. Y.M. Rangkuti, M.S.M. Noorani, The exact solution of delay differential equations using coupling variational iteration with Taylor series and small term. Bull. Math. 4(01), 1–15 (2012)

    Google Scholar 

  9. S.C. Chapra, Applied Numerical Methods (McGraw-Hill, Columbus, 2012)

    Google Scholar 

  10. S.K. Vanani, S. Hafshejani, M. Khan, On the numerical solution of generalized pantograph equation. World Appl. Sci. J. 13(12), 2531–2535 (2011)

    Google Scholar 

  11. L. Bogachev, G. Derfel, S. Molchanov, J. Ochendon, On bounded solutions of the balanced generalized pantograph equation, in Topics in Stochastic Analysis and Nonparametric Estimation, volume 145 of the IMA Volumes in Mathematics and its Applications, ed. by P.-L. Chow, G. Yin, B. Mordukhovich (Springer, New York, 2008), pp. 29–49

    Google Scholar 

  12. M.Z. Liu, D. Li, Properties of analytic solution and numerical solution of multi-pantograph equation. Appl. Math. Comput. 155(3), 853–871 (2004)

    MathSciNet  MATH  Google Scholar 

  13. M.A. Koroma, C. Zhan, A.F. Kamara, A.B. Sesay, Laplace decomposition approximation solution for a system of multi-pantograph equations. Int. J. Math. Comput. Sci. Eng. 7(7), 39–44 (2013)

    Google Scholar 

  14. M. Sezer, N. Şahin, Approximate solution of multi-pantograph equation with variable coefficients. J. Comput. Appl. Math. 214(2), 406–416 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Y. Keskin, A. Kurnaz, Μ.E. Kiris, G. Oturanc, Approximate solutions of generalized pantograph equations by the differential transform method. Int. J. Nonlinear Sci. Numer. Simul. 8(2), 159–164 (2007)

    Article  Google Scholar 

  16. G. Derfel, A. Iserles, The pantograph equation in the complex plane. J. Math. Anal. Appl. 213(1), 117–132 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Abazari, R. Abazari, Solution of nonlinear second-order pantograph equations via differential transformation method, in Proceedings of World Academy of Science, Engineering and Technology, vol. 58 (2009), pp. 1052–1056

  18. A. Saadatmandi, M. Dehghan, Variational iteration method for solving a generalized pantograph equation. Comput. Math. Appl. 58(11–12), 2190–2196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Benhammouda, H. Vazquez-Leal, L. Hernandez-Martinez, Procedure for exact solutions of nonlinear pantograph delay differential equations. J. Adv. Math. Comput. Sci. 4, 2738–2751 (2014)

    Google Scholar 

  20. S. Widatalla, M.A. Koroma, Approximation algorithm for a system of pantograph equations. J. Appl. Math. 8, 23–32 (2012)

    MathSciNet  MATH  Google Scholar 

  21. X. Feng, An analytic study on the multi-pantograph delay equations with variable coefficients. Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie 56, 205–215 (2013)

    MathSciNet  MATH  Google Scholar 

  22. M.A. Jafari, A. Aminataei, Method of successive approximations for solving the multi-pantograph delay equations. Gen. Math. Notes 8(1), 23–28 (2012)

    Google Scholar 

  23. Y. Muroya, E. Ishiwata, H. Brunner, On the attainable order of collocation methods for pantograph integro-differential equations. J. Comput. Appl. Math. 152(1–2), 347–366 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. D. Li, M.Z. Liu, Runge-Kutta methods for the multi-pantograph delay equation. Appl. Math. Comput. 163(1), 383–395 (2005)

    MathSciNet  MATH  Google Scholar 

  25. D. Flockerzi, K. Sundmacher, On coupled Lane–Emden equations arising in dusty fluid models. J. Phys. Conf. Ser. 268(1), 012006 (2011)

    Article  Google Scholar 

  26. V.B. Mandelzweig, F. Tabakin, Quasi linearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2), 268–281 (2001)

    Article  ADS  MATH  Google Scholar 

  27. T. Luo, Z. Xin, H. Zeng, Nonlinear asymptotic stability of the Lane–Emden solutions for the viscous gaseous star problem with degenerate density dependent viscosities. Commun. Math. Phys. 347(3), 657–702 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Rach, J.S. Duan, A.M. Wazwaz, Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52(1), 255–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Boubaker, R.A. Van Gorder, Application of the BPES to Lane–Emden equations governing polytropic and isothermal gas spheres. New Astron. 17(6), 565–569 (2012)

    Article  ADS  Google Scholar 

  30. J.A. Khan, M.A.Z. Raja, M.M. Rashidi, M.I. Syam, A.M. Wazwaz, Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory. Connect. Sci. 27(4), 377–396 (2015)

    Article  ADS  Google Scholar 

  31. J.I. Ramos, Linearization methods in classical and quantum mechanics. Comput. Phys. Commun. 153(2), 199–208 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M. Dehghan, F. Shakeri, Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method. Prog. Electromagn. Res. 78, 361–376 (2008)

    Article  Google Scholar 

  33. A.H. Bhrawy, A.S. Alofi, R.A. Van Gorder, An efficient collocation method for a class of boundary value problems arising in mathematical physics and geometry, in Abstract and Applied Analysis, vol. 2014 (Hindawi Publishing Corporation, 2014)

  34. A. Taghavi, S. Pearce, A solution to the Lane–Emden equation in the theory of stellar structure utilizing the Tau method. Math. Methods Appl. Sci. 36(10), 1240–1247 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. Radulescu, D. Repovs, Combined effects in nonlinear problems arising in the study of anisotropic continuous media. Nonlinear Anal. Theory Methods Appl. 75(3), 1524–1530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Ghergu, V. Radulescu, On a class of singular Gierer–Meinhardt systems arising in morphogenesis. Comptes Rendus Math. 344(3), 163–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. N.T. Shawagfeh, Non-perturbative approximate solution for Lane–Emden equation. J. Math. Phys. 34(9), 4364–4369 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A.M. Wazwaz, A new algorithm for solving differential equations of Lane–Emden type. Appl. Math. Comput. 118(2), 287–310 (2001)

    MathSciNet  MATH  Google Scholar 

  39. S. Liao, A new analytic algorithm of Lane–Emden type equations. Appl. Math. Comput. 142(1), 1–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. C.M. Bender, K.A. Milton, S.S. Pinsky, L.M. Simmons Jr., A new perturbative approach to nonlinear problems. J. Math. Phys. 30(7), 1447–1455 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. K. Parand, M. Razzaghi, Rational Legendre approximation for solving some physical problems on semi-infinite intervals. Phys. Scr. 69(5), 353 (2004)

    Article  ADS  MATH  Google Scholar 

  42. M.I. Nouh, Accelerated power series solution of polytropic and isothermal gas spheres. New Astron. 9(6), 467–473 (2004)

    Article  ADS  Google Scholar 

  43. J.H. Lane, ART. IX.—On the theoretical temperature of the sun; under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. Am. J. Sci. Arts (1820–1879) 50(148), 57 (1870)

    ADS  Google Scholar 

  44. Z. Sabir, H.A. Wahab, M. Umar, M.G. Sakar, M.A.Z. Raja, Novel design of Morlet wavelet neural network for solving second order Lane–Emden equation. Math. Comput. Simul. 172, 1–14 (2020)

    Article  MathSciNet  Google Scholar 

  45. R.H. Fowler, Further studies of Emden’s and similar differential equations. Q. J. Math. 1, 259–288 (1931)

    Article  ADS  MATH  Google Scholar 

  46. H.T. Davis, Introduction to Nonlinear Differential and Integral Equations (Courier Corporation, North Chelmsford, 1962)

    Google Scholar 

  47. S. Chandrasekhar, S. Chandrasekhar, An Introduction to the Study of Stellar Structure, vol. 2 (Courier Corporation, North Chelmsford, 1957)

    MATH  Google Scholar 

  48. M. El-Gamel, W. Adel, M.S. El-Azab, Bernoulli polynomial and the numerical solution of high-order boundary value problems

  49. M. El-Gamel, W. Adel, M.S. El-Azab, Collocation method based on Bernoulli polynomial and shifted Chebychev for solving the Bratu equation. J. Appl. Comput. Math. 7, 7 (2018)

    Google Scholar 

  50. M. El-Gamel, W. Adel, M.S. El-Azab, Two very accurate and e fficient methods for solving time-dependent problems. Appl. Math. 9(11), 1270 (2018)

    Article  Google Scholar 

  51. Z. Sabir, H.A. Wahab, M. Umar, F. Erdoğan, Stochastic numerical approach for solving second order nonlinear singular functional differential equation. Appl. Math. Comput. 363, 124605 (2019)

    MathSciNet  MATH  Google Scholar 

  52. M. Umar, F. Amin, H.A. Wahab, D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery. Appl. Soft Comput. 85, 105826 (2019)

    Article  Google Scholar 

  53. M. Umar, Z. Sabir, M.A.Z. Raja, Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl. Soft Comput. 80, 506–524 (2019)

    Article  Google Scholar 

  54. M.A.Z. Raja, M. Umar, Z. Sabir, J.A. Khan, D. Baleanu, A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus 133(9), 364 (2018)

    Article  Google Scholar 

  55. Z. Sabir, M.A. Manzar, M.A.Z. Raja, M. Sheraz, A.M. Wazwaz, Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl. Soft Comput. 65, 152–169 (2018)

    Article  Google Scholar 

  56. M.A.Z. Raja, J. Mehmood, Z. Sabir, A.K. Nasab, M.A. Manzar, Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput. Appl. 31(3), 793–812 (2019)

    Article  Google Scholar 

  57. M.A.Z. Raja, Z. Sabir, N. Mehmood, E.S. Al-Aidarous, J.A. Khan, Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neural Comput. Appl. 26(1), 1–23 (2015)

    Article  Google Scholar 

  58. J. Džurina, S.R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 278, 12–13 (2019)

    MATH  Google Scholar 

  59. T. Li, Y.V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatshefte für Mathematik 184(3), 489–500 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. T. Li, Y.V. Rogovchenko, On asymptotic behavior of solutions to higher-order, sublinear Emden-Fowler delay differential equations. Appl. Math. Lett. 67, 53–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed Adel.

Ethics declarations

Conflict of interest

All the authors of the manuscript declared that there are no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adel, W., Sabir, Z. Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method. Eur. Phys. J. Plus 135, 427 (2020). https://doi.org/10.1140/epjp/s13360-020-00449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00449-x

Navigation