Skip to main content
Log in

Spin–orbit interaction on the thermodynamics of three-dimensional impurity magnetopolaron under strong parabolic potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present paper, the thermodynamics of three-dimensional impurity magnetopolaron under strong parabolic potential is investigated. To this aim, we first analytically solved the Schrodinger equation to have the complete energy spectrum in the presence of spin–orbit interaction. We equally use the canonical ensemble approach to obtain the partition function before calculating the thermodynamic parameters. Afterward, we found a great dependence of those thermodynamic parameters such as entropy and heat capacity on spin–orbit interaction (SOI). From this investigation, we found that there are some particular values of SOI for which we have a minimum values reached by the entropy as well as in the presence of magnetic field than temperature. This study allows us to conclude that SOI is a very useful parameter in order to build stable quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Hashimoto, N. Iizuka, T. Kimura, Phys. Rev. D 91, 086003 (2015)

    ADS  MathSciNet  Google Scholar 

  2. M.E. Flatt, Nature 462, 419 (2009)

    ADS  Google Scholar 

  3. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  4. Gene Dresselhaus, Phys. Rev. 100, 580 (1955)

    ADS  Google Scholar 

  5. Z. Lin, W. Jun, Commeon. Theor. Phys. 55, 709 (2011)

    ADS  Google Scholar 

  6. H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Ann. Phys. 326, 2957 (2011)

    ADS  Google Scholar 

  7. H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Few-Body Syst. 52, 87 (2012)

    ADS  Google Scholar 

  8. J.-L. Li, Y.-X. Li, Chin. Phys. Lett. 27, 057202 (2010)

    ADS  Google Scholar 

  9. M.S. Kushwaha, J. Appl. Phys. 104, 083714 (2008)

    ADS  Google Scholar 

  10. B.S. Kandemir, D. Akay, J. Magn. Magn. Mater. 384, 101–105 (2015)

    ADS  Google Scholar 

  11. B.S. Kandemir, D. Akay, Philos. Mag. 97, 2225–2235 (2017)

    ADS  Google Scholar 

  12. J.W. Yin, W.P. Li, Y.F. Yu, J.L. Xiao, J. Low Temp. Phys. 163, 53 (2011)

    ADS  Google Scholar 

  13. E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)

    Google Scholar 

  14. C. Lucian, M. Berciu, Phys. Rev. Lett. 102(18), 186403 (2009)

    ADS  Google Scholar 

  15. C. Grimaldi, Phys. Rev. B 81, 075306 (2010)

    ADS  Google Scholar 

  16. A. Vartanian, A. Kirakosyan, K. Vardanyan, Superlattices Microstruct. 109, 655–661 (2017)

    ADS  Google Scholar 

  17. Z. Li et al., Appl. Phys. Lett. 90, 112103 (2007)

    ADS  Google Scholar 

  18. A.Y. Firsov, Polarons Adv. Mater. 103, 63–105 (2007)

    ADS  Google Scholar 

  19. Y.J. Chen, W.F. Liu, F.L. Shao, Physica E 110, 15–19 (2019)

    ADS  Google Scholar 

  20. Y.J. Chen, C.F. Cui, H.T. Song, Physic E 111, 130–133 (2019)

    ADS  Google Scholar 

  21. J.D. Castano-Yepes, C.F. Ramirez-Gutierrez, H. Correa-Gallego, E.A. Gomez, http://arXiv.org/abs/1609.01359v2

  22. B. Boyacioglu, A. Chatterjee, J. Appl. Phys. 112, 083514 (2012)

    ADS  Google Scholar 

  23. M.K. Elsaid, E. Hijaz, Acta Phys. Pol., A 131, 6 (2017)

    Google Scholar 

  24. B. Boyacioglu, A. Chatterjee, Int. J. Mod. Phys. B 26, 1250018 (2012)

    ADS  Google Scholar 

  25. C.F. Ramirez-Gutierrez, J.D. Castano-Yepes, M.E. Rodriguez-Garcia, J. Appl. Phys. 119, 185103 (2016)

    ADS  Google Scholar 

  26. S. Gumber, M. Kumar, M. Gambhir, M. Mohan, P.K. Jha, Can. J. Phys. 93, 1264 (2015)

    ADS  Google Scholar 

  27. J.-J.S. De Groote, J.E.M. Hornos, A.V. Chaplik, Phys. Rev. B 46, 12773 (1992)

    ADS  Google Scholar 

  28. M. Xinjun, X. Boyu, S. Yong, X. Jinglin, J. Semicond. 36, 102004 (2015)

    ADS  Google Scholar 

  29. L.I. Korovin, I.G. Lang, S.T. Pavlov, JETP Lett. 65, 532 (1997)

    ADS  Google Scholar 

  30. C.D. Bezant, J.M. Chamberlain, H.P.M. Pellemans, B.N. Murdin, W. Batty, M. Henini, Semicond. Sci. Technol. 14, L25 (1999)

    ADS  Google Scholar 

  31. N.T.T. Nguyen, F.M. Peeters, Phys. Rev. B 78, 045321 (2008)

    ADS  Google Scholar 

  32. P.A. Maksym, T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990)

    ADS  Google Scholar 

  33. M. Kirak, Y. Altinok, Eur. Phys. J. B 85, 344 (2012)

    ADS  Google Scholar 

  34. C.M. Duque, M. Mora-Ramos, C.A. Duque, J. Nanopart. Res. 13, 6103 (2011)

    ADS  Google Scholar 

  35. S.J. Liang, W.F. Xie, H.Y. Shen, Opt. Commun. 284, 5818 (2011)

    ADS  Google Scholar 

  36. E. Ozturk, I. Sökmen, Superlattices Microstruct. 41, 36 (2007)

    ADS  Google Scholar 

  37. S. Şakiroğlu, F. Ungan, U. Yesilgul, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sökmen, Phys. Lett. A 376, 1875 (2012)

    ADS  Google Scholar 

  38. C.M. Duque, M. Mora-Ramos, C.A. Duque, J. Lumin. 138, 53 (2013)

    Google Scholar 

  39. M.J. Karimi, A. Keshavarz, A. Poostforush, Superlattices Microstruct. 49, 441 (2011)

    ADS  Google Scholar 

  40. L. Zhang, H.J. Xie, Physica E 22, 791 (2004)

    ADS  Google Scholar 

  41. U. Yesilgul, F. Ungan, E. Kasapoglu, H. Sari, I. Sokmen, Superlattices Microstruct. 50, 400 (2011)

    ADS  Google Scholar 

  42. S. Gasiorowicz, Quantum Physics, 3rd edn. (Wiley, Hoboke, 2003)

    MATH  Google Scholar 

  43. B. Boyacioglu, A. Chatterjee, Physica E 44, 1826 (2012)

    ADS  Google Scholar 

  44. J.I. Climente, J. Planelles, J.L. Movilla, Phys. Rev. B 70, 081301 (2004)

    ADS  Google Scholar 

  45. M. Esposito, K. Lindenberg, C. Van Den Broeck, Europhys. Lett. 85, 60010 (2009)

    ADS  Google Scholar 

  46. M. Saitoh, J. Phys. Soc. Jpn. 50, 2295–2302 (1981)

    ADS  Google Scholar 

  47. M.K. Elsaid, E. Hijaz, Acta Phys. Pol., A 131, 1491 (2017). https://doi.org/10.12693/aphyspola.131.1491

    Article  ADS  Google Scholar 

  48. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, L.C. Fai, Physica E 118, 113941 (2020)

    Google Scholar 

  49. K.S. Christian, A.J. Fotue, M.F.C. Fobasso, J.-R.D. Djomou, M. Tiotsop, K.S.L. Ngouana, L.C. Fai, Indian J. Phys. 91, 1525 (2016). https://doi.org/10.1007/s12648-017-1058-3

    Article  Google Scholar 

  50. W.H. Kuan, C.S. Tang, W. Xu, arXiv: Cond-Mat/0403098v2 [Cond-Mat.Mes-Hall] (2004)

  51. J.D. Castaño-Yepes et al., Physica E 103, 464–470 (2018)

    ADS  Google Scholar 

  52. D. Najafi, B. Vaseghi, G. Rezaei et al., Eur. Phys. J. Plus 133, 302 (2018)

    Google Scholar 

  53. D. Bercioux, A. De Martino, Phys. Rev. B 100, 115407 (2019)

    ADS  Google Scholar 

  54. B.S. Kandemir, A. Cetin, J. Phys.: Condens. Matter 17(4), 667 (2005)

    ADS  Google Scholar 

  55. L.E. Díaz-Sánchez, A.H. Romero, M. Cardona, R.K. Kremer, X. Gonze, Phys. Rev. Lett. 99, 165504 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fotue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotue, A.J., Diffo, T.V., Baloitcha, E. et al. Spin–orbit interaction on the thermodynamics of three-dimensional impurity magnetopolaron under strong parabolic potential. Eur. Phys. J. Plus 135, 430 (2020). https://doi.org/10.1140/epjp/s13360-020-00441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00441-5

Navigation