Skip to main content
Log in

Dissociation of nucleon and heavy baryon in an anisotropic hot and dense QCD medium using Nikiforov–Uvarov method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By using the Nikiforov–Uvarov method, the hyper-radial Schrödinger equation is analytically solved, in which the real modified potential is employed at finite temperature and baryon chemical potential. The eigenvalue of energy and corresponding wave function are obtained in the isotropic and anisotropic media in the hot and dense media. The present results show that the binding energy of nucleon and some heavy baryon decreases strongly in hot medium and decreases slightly with increasing baryon chemical potential. In addition, the binding energy for each baryon is more bound in an anisotropic medium in comparison with its value in an isotropic medium. The temperature dissociation of each baryon is above a critical temperature, and it increases in the anisotropic medium. The dissociation of temperature is slightly decreased in the hot medium when the baryon of chemical potential is considered. A comparison is studied with the other available studies. We conclude that the present study provides a good description of the nucleon and some heavy baryon in the hot and dense media in the isotropic and anisotropic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.K. Patra, D.K. Srivastava, Phys. Lett. B 505, 113 (2001)

    Article  ADS  Google Scholar 

  2. D. Pal, B.K. Patra, D.K. Srivastava, Eur. J. Phys. C 17, 179 (2000)

    Article  ADS  Google Scholar 

  3. V. Agotiya, V. Chandra, B.K. Patra, Phys. Rev. C 80, 025210 (2009)

    Article  ADS  Google Scholar 

  4. A. Mocsy, P. Petreczky, Phys. Rev. D 77, 014501 (2008)

    Article  ADS  Google Scholar 

  5. S. Digal, P. Petreczky, H. Satz, Phys. Lett. B 514, 57 (2001)

    Article  ADS  Google Scholar 

  6. E.V. Shuryak, I. Zahed, Phys. Rev. D 70, 054507 (2004)

    Article  ADS  Google Scholar 

  7. W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, Phys. Rev. D 72, 114011 (2005)

    Article  ADS  Google Scholar 

  8. C.Y. Wong, H.W. Crater, Phys. Rev. D 75, 034505 (2007)

    Article  ADS  Google Scholar 

  9. W.M. Alberico, A. Beraudo, A.D. Pace, A. Molinari, Phys. Rev. D 75, 074009 (2007)

    Article  ADS  Google Scholar 

  10. M. Abu-Shady, T.A. Abdel-Karim, E.M. Khokha, Adv. High Energy Phys. 2018, 7356843 (2018)

    Google Scholar 

  11. M. Abu-Shady, H.M. Mansour, A.I. Ahmadov, Adv. High Energy Phys. 2019, 4785615 (2019)

    Article  Google Scholar 

  12. M. Abu-Shady, A. N. Ikot, The Eur. Phys. J. - Plus (2019). arXiv:1903.02265(accepted)

  13. M. Abu-Shady, Adv. Math. Phys. 2016, 4935940 (2016)

    Article  MathSciNet  Google Scholar 

  14. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  15. W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  16. C. Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013)

    Article  ADS  Google Scholar 

  17. A. Jaiswal, V. Roy, Adv. High Energy Phys. 2016, 9623034 (2016)

    Article  Google Scholar 

  18. S. Gao, B. Liu, W.Q. Chao, Phys. Lett. B 378, 23 (1996)

    Article  ADS  Google Scholar 

  19. B. Liu, P.N. Shen, H.C. Chiang, Phys. Rev. C 55, 3021 (1997)

    Article  ADS  Google Scholar 

  20. F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37, 617 (1988)

    Article  ADS  Google Scholar 

  21. J. Takahashi, K. Nagata, T. Saito, A. Nakamura, T. Sasaki, H. Kouno, M. Yahiro, Phys. Rev. D 88, 114504 (2013)

    Article  ADS  Google Scholar 

  22. U. Kakade, B.K. Patra, Phys. Rev. C 92, 024901 (2015)

    Article  ADS  Google Scholar 

  23. L. Thakur, N.L. Haque, U. Kakade, B.K. Patra, Phys. Rev. D 88, 054022 (2013)

    Article  ADS  Google Scholar 

  24. A. Dumitru, Y. Guob, M. Strickland, Phys. Lett. B 662, 37 (2008)

    Article  ADS  Google Scholar 

  25. R. Baier, Y. Mehtar-Tani, Phys. Rev. C 78, 064906 (2008)

    Article  ADS  Google Scholar 

  26. M.E. Carrington, K. Deja, S. Mrowczynski, Phys. Rev. C 90, 034913 (2014)

    Article  ADS  Google Scholar 

  27. R. Ryblewski, hep-ph/170100644 (2017)

  28. M. Y. Jamal, S. Mitra, V. Chandra, hep-ph/170602995 (2017)

  29. M.Y. Jamal, I. Nilima, V. Chandra, V.K. Agotiyab, Phys. Rev. D 97, 094033 (2018)

    Article  ADS  Google Scholar 

  30. P. Cheng, Q. Meng, Y. Xia, J. Ping, H. Zong, Phys. Rev. D 98, 116010 (2018)

    Article  ADS  Google Scholar 

  31. H. Mao, T. Wei, J. Jin, Phys. Rev. C 88, 035201 (2013)

    Article  ADS  Google Scholar 

  32. Y. Li, J. Hu, H. Mao, Phys. Rev. C 97, 054313 (2018)

    Article  ADS  Google Scholar 

  33. M. Abu-Shady, Mod. Phys. Lett. A 29, 1450176 (2018)

    Article  Google Scholar 

  34. M. Abu-Shady, M. Soleiman, Phys. Part. Nuclei Lett. 10, 683 (2013)

    Article  ADS  Google Scholar 

  35. M. Abu-Shady, Int. J. Mod. Phys. E 21, 1250061 (2012)

    Article  ADS  Google Scholar 

  36. M. Abu-Shady, A. Abu-Nab, Eur. Phys. J. Plus 130, 248 (2015)

    Article  Google Scholar 

  37. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988)

    Book  Google Scholar 

  38. P.K. Srivastava, O.S.K. Chaturvedi, Thakur, Eur. Phys. J. C 78, 440 (2018)

    Article  ADS  Google Scholar 

  39. H. Hassanabadi, S. Rahmani, S. Zarrinkamer, Phys. Rev. D 90, 074024 (2014)

    Article  ADS  Google Scholar 

  40. H. Hassanabadi, Commun. Theor. Phys. 55, 303 (2014)

    Article  ADS  Google Scholar 

  41. M.E. Souza, J. Nucl. Part. Phys. 3, 72 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ikot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Shady, M., Ikot, A.N. Dissociation of nucleon and heavy baryon in an anisotropic hot and dense QCD medium using Nikiforov–Uvarov method. Eur. Phys. J. Plus 135, 406 (2020). https://doi.org/10.1140/epjp/s13360-020-00436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00436-2

Navigation