Skip to main content
Log in

Cosmological constrains on new generalized Chaplygin gas model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We use different combinations of data samples to investigate the new generalized Chaplygin gas (NGCG) model in the context of dark energy (DE) cosmology. Using the available cosmological data, we put constraints on the the free parameters of NGCG model based on the statistical Markov chain Monte Carlo method. We then find the best fit values of cosmological parameters and those confidence regions in NGCG cosmology. Our result for the matter density parameter calculated in NGCG model is in excellent agreement with that of the standard \(\Lambda \)CDM cosmology. We also find that the equation of state of DE of the model slightly favors the phantom regime. We show that the big tension between the low- and high-redshift observations appearing in \(\Lambda \)CDM universe to predict the Hubble constant \(H_0\) can be alleviated in NGCG model. However, from the statistical point of view, our results show that the standard \(\Lambda \)CDM model fits the observations better than the NGCG cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Komatsu, J. Dunkley, M.R. Nolta et al., ApJS 180, 330 (2009)

    ADS  Google Scholar 

  2. E. Komatsu, K.M. Smith, J. Dunkley et al., ApJS 192, 18 (2011)

    ADS  Google Scholar 

  3. A.G. Riess, A.V. Filippenko, P. Challis et al., AJ 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. S. Perlmutter, G. Aldering, G. Goldhaber et al., ApJ 517, 565 (1999)

    Article  ADS  Google Scholar 

  5. W.J. Percival, B.A. Reid, D.J. Eisenstein et al., MNRAS 401, 2148 (2010)

    ADS  Google Scholar 

  6. P.A.R. Ade et al., A&A 594, A20 (2016)

    ADS  Google Scholar 

  7. S. Weinberg, Mod. Phys. Rev. 61, 527 (1989)

    Google Scholar 

  8. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    MathSciNet  ADS  Google Scholar 

  9. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  10. P.G. Debendetti, E.H. Stanley, Supercooled and glassy water. Phys. Today 56(3), 40–46 (2003)

    Google Scholar 

  11. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003). arXiv:astro-ph/0302506

  12. M.R. Setare, Eur. Phys. J. C 50, 991 (2007)

    ADS  Google Scholar 

  13. Q. Wu, Y.G. Gong, A.Z. Wang, J.S. Alcanizd, Phys. Lett. B 659, 34 (2008)

    ADS  Google Scholar 

  14. B. Feng, M. Li, Y.-S. Piao, X. Zhang, Phys. Lett. B 634, 101 (2006)

    ADS  Google Scholar 

  15. R.G. Cai, Phys. Lett. B 657, 228 (2007)

    MathSciNet  ADS  Google Scholar 

  16. R. Schutzhold, Phys. Rev. Lett. 89, 081302 (2002)

    ADS  Google Scholar 

  17. A. Mehrabi, S. Basilakos, F. Pace, Mon. Not. R. Astron. Soc. 452, 2930 (2015)

    ADS  Google Scholar 

  18. M. Malekjani, S. Basilakos, Z. Davari, A. Mehrabi, M. Rezaei, Mon. Not. R. Astron. Soc. 464, 1192 (2017)

    ADS  Google Scholar 

  19. M. Rezaei, M. Malekjani, S. Basilakos, A. Mehrabi, D.F. Mota, Astrophys. J. 843, 65 (2017)

    ADS  Google Scholar 

  20. M. Rezaei, Mon. Not. R. Astron. Soc. 485, 4841 (2019)

    ADS  Google Scholar 

  21. M. Rezaei, M. Malekjani, J. Sola, Phys. Rev. D. 100, 023539 (2019)

    MathSciNet  ADS  Google Scholar 

  22. B. Boisseau, G. Esposito-Farese, D. Polarski, A.A. Starobinsky, Phys. Rev. Lett. 85, 2236 (2000)

    ADS  Google Scholar 

  23. G. Dvali, G. Gabadadze, M. Porati, Phys. Lett. B 485, 208 (2000)

    MathSciNet  ADS  Google Scholar 

  24. A.Y. Kamenshchik et al., Phys. Lett. B 511, 265 (2001)

    ADS  Google Scholar 

  25. V. Gorini, et al., (2004). arXiv:gr-qc/0403062v2

  26. H.B. Sandvik et al., Phys. Rev. D 69, 123524 (2004)

    ADS  Google Scholar 

  27. R. Bean et al., Phys. Rev. D 68, 023515 (2003)

    MathSciNet  ADS  Google Scholar 

  28. A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    ADS  Google Scholar 

  29. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002). arXiv:gr-qc/0202064

  30. J.C. Fabris et al., Gen. Rel. Grav. 36, 211 (2004)

    ADS  Google Scholar 

  31. T. Barreiro, O. Bertolami, P. Torres, Phys. Rev. D 78, 043530 (2008)

    ADS  Google Scholar 

  32. X. Zhang, F.Q. Wu, J. Zhang, JCAP 0601, 003 (2006)

    ADS  Google Scholar 

  33. D.M. Scolnic et al., Astrophys. J. 859, 101 (2018)

    ADS  Google Scholar 

  34. N. Suzuki, D. Rubin, C. Lidman, G. Aldering et al., ApJ 746, 85 (2012)

    ADS  Google Scholar 

  35. R.J. Cooke, M. Pettini, C.C. Steidel, Astrophys. J. 855, 102 (2018)

    ADS  Google Scholar 

  36. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    ADS  Google Scholar 

  37. C. Blake, E. Kazin, F. Beutler, T. Davis, D. Parkinson et al., MNRAS 418, 1707 (2011)

    ADS  Google Scholar 

  38. J. Dunkley et al., ApJS 180, 306 (2009)

    ADS  Google Scholar 

  39. H. Akaike, ITAC 19, 716 (1974)

    ADS  Google Scholar 

  40. D.M. Scolnic et al., Astrophys. J. 859, 101 (2018)

    ADS  Google Scholar 

  41. A. Mehrabi, S. Basilakos, F. Pace, MNRAS 452, 2930 (2015)

    ADS  Google Scholar 

  42. G. Hinshaw et al., ApJS 208, 19 (2013)

    ADS  Google Scholar 

  43. F. Beutler, C. Blake, M. Colless, D.H. Jones, L. Staveley-Smith et al., MNRAS 416, 3017 (2011)

    ADS  Google Scholar 

  44. N. Padmanabhan, X. Xu, D.J. Eisenstein, R. Scalzo, A.J. Cuesta et al., MNRAS 427, 2132 (2012)

    ADS  Google Scholar 

  45. L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton et al., MNRAS 427, 3435 (2013)

    ADS  Google Scholar 

  46. C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch et al., MNRAS 415, 2876 (2011)

    ADS  Google Scholar 

  47. A.G. Riess, S. Casertano, W. Yuan, L. Macri, J. An-derson, J.W. MacKenty, J.B. Bowers, K.I. Clubb, A.V. Filippenko, D.O. Jones, B.E. Tucker, ApJ 855, 136 (2018)

    ADS  Google Scholar 

  48. C. Zhang, H. Zhang, S. Yuan et al., Res. Astron. Astrophys. 14, 1221 (2014)

    ADS  Google Scholar 

  49. D. Stern, R. Jimenez, L. Verde et al., J. Cosmol. Astropart. Phys. 1002, 008 (2010)

    ADS  Google Scholar 

  50. M. Moresco et al., J. Cosmol. Astropart. Phys. 1208006, 11 (2012)

    Google Scholar 

  51. C.H. Chuang, Y. Wang, Mon. Not. R. Astron. Soc. 435, 255 (2013)

    ADS  Google Scholar 

  52. J.E. Bautista et al., Astron. Astrophys. 603, A12 (2017)

    Google Scholar 

  53. W. Hu, N. Sugiyama, ApJ 471, 542 (1996)

    ADS  Google Scholar 

  54. N. Aghanim et al. (Planck) (2018). arXiv:1807.06209

  55. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Astrophys. J. 876, 85 (2019)

    ADS  Google Scholar 

  56. K.P. Burnham, D.R. Anderson, Model Selection and Multi-model Inference (Springer, New York, 2002)

    MATH  Google Scholar 

  57. M. Malekjani, M. Rezaei, I.A. Akhlaghi, Phys. Rev. D 98, 063533 (2018)

    MathSciNet  ADS  Google Scholar 

  58. E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Pazhouhesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahedin, F., Pazhouhesh, R. & Malekjani, M. Cosmological constrains on new generalized Chaplygin gas model . Eur. Phys. J. Plus 135, 429 (2020). https://doi.org/10.1140/epjp/s13360-020-00429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00429-1

Navigation