Skip to main content
Log in

A multiphysics model for analysis of inert gas bubbles in Molten Salt Fast Reactor

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Molten salt reactors (MSRs) have gained worldwide interest in recent years due to their appealing safety and resource utilisation characteristics. These reactors have a unique feature, i.e. the presence of nuclear fuel in the form of a molten fluoride or chloride salt containing the fissile and fertile materials. The fuel salt also acts as the coolant, and this dual role results in a complex, highly coupled multiphysics system which poses a challenge in modelling and simulation of MSRs. This paper presents the development of a simulation model for the Molten Salt Fast Reactor (MSFR) to predict the behaviour of inert gas bubbles in the core and to quantify their impact on the reactivity. Inert gas bubbles in MSFR have been modelled using a multiphysics approach coupling computational fluid dynamics for fluid flow and heat transfer with neutron diffusion equation for neutronics and a balance equation with diffusion and advection terms for taking into account the drift of the delayed neutron precursors. The two-phase flow has been modelled using a simplified Euler–Euler model for small volume fraction of the dispersed phase, i.e. for small bubble fraction, which combines the momentum and continuity equation of the liquid and gas phases and adds a gas-phase transport equation to track the void fraction. Simulations reveal that the bubble distribution in the core has a significant impact on reactivity resulting in a difference in the bubbling feedback coefficient compared to studies using a homogeneous distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. samofar.eu. About SAMOFAR. Available at http://samofar.eu/. Accessed May 24, 2019

  2. D. Gèrardin, M. Allibert, D. Heuer, A. Laureau, E. Merle, C. Seuvre, in Proceedings of International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17) (Yekaterinburg, Russia, 2017)

  3. J. Serp, M. Allibert, O. Beneš, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlíř, R. Yoshioka, D. Zhimin, Prog Nuclear Energy 77, 308 (2014). https://doi.org/10.1016/j.pnucene.2014.02.014

    Article  Google Scholar 

  4. E. Cervi, S. Lorenzi, A. Cammi, L. Luzzi, Chem. Eng. Sci. 193, 379 (2019). https://doi.org/10.1016/j.ces.2018.09.025

    Article  Google Scholar 

  5. E. Cervi, S. Lorenzi, L. Luzzi, A. Cammi, Ann. Nuclear Energy 132, 227 (2019). https://doi.org/10.1016/j.anucene.2019.04.029

    Article  Google Scholar 

  6. A. Sokolichin, G. Eigenberger, A. Lapin, AIChE J. 50(1), 24 (2004). https://doi.org/10.1002/aic.10003

    Article  Google Scholar 

  7. G.B. Wallis, One-Dimensional Two-Phase Flow (McGraw-Hill, New York, 1969)

    Google Scholar 

  8. M. Ishii, Thermo-fluid dynamic theory of two-phase flow. No. 22 in Collection de la Direction des Etudes et Recherches d’Electricite de France (Eyrolles, Paris, 1975)

  9. R. Lahey Jr., D. Drew, Chem. Eng. Commun. 118(1), 125 (1992). https://doi.org/10.1080/00986449208936090

    Article  Google Scholar 

  10. M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, 1st edn. (Springer, New York, 2006)

    Book  Google Scholar 

  11. H. Rusche, Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Ph.D. thesis, Imperial College London, London, United Kingdom (2003)

  12. R. Bird, W. Stewart, E. Lightfoot, Transport Phenomena, Revised 2 edn. (Wiley, New York, 2007)

    Google Scholar 

  13. W.M. Kays, M.E. Crawford, Convective Heat and Mass Transfer, 3rd edn. (McGraw-Hill, Boston, 1993)

    Google Scholar 

  14. D. Kuzmin, S. Turek, Efficient Numerical Techniques for Flow Simulation in Bubble Column Reactors (Univ. Dortmund, Fachbereich Mathematik, 2000)

    Google Scholar 

  15. C. Fiorina, A. Cammi, L. Luzzi, K. Mikityuk, H. Ninokata, M.E. Ricotti, J. Phys. Conf. Ser. 501(1), 012030 (2014). https://doi.org/10.1088/1742-6596/501/1/012030

    Article  Google Scholar 

  16. E. Cervi, S. Lorenzi, A. Cammi, L. Luzzi, Nuclear Eng. Design 346, 209 (2019). https://doi.org/10.1016/j.nucengdes.2019.03

    Article  Google Scholar 

  17. J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976)

    Google Scholar 

  18. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, Ann. Nuclear Energy 82, 142 (2015). https://doi.org/10.1016/j.anucene.2014.08.024. Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity, Towards New Modeling and Numerical Simulation Paradigms

  19. A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, O. Bersillon, O. Bouland, A. Courcelle, M.C. Duijvestijn, E. Dupont, J. Kopecky, D. Leichtle, F. Marie, M. Mattes, E. Menapace, B. Morillon, C. Mounier, G. Noguerre, P. Pereslavtsev, P. Romain, O. Serot, S. Simakov, S. Tagesen, H. Vonach, P. Batistoni, P. Bem, F. Gunsing, M. Pillon, A. Plompen, P. Rullhusen, K. Seidel, M. Avrigeanu, V. Avrigeanu, E. Bauge, H. Leeb, M.J. Lopez Jimenez, D. Bernard, A. Bidaud, R. Dagan, C. Dean, P. Dos-Santos-Uzarralde, U. Fischer, A. Hogenbirk, R. Jacqmin, C. Jouanne, I. Kodeli, J. Leppanen, S.C.v.d. Marck, R. Perel, R. Perry, M. Pescarini, A. Santamarina, J.C. Sublet, A. Trkov, M.M. Be, T.D. Huynh, M. Kellett, R. Mills, A. Nichols, H. Henriksson, C. Nordborg, A. Nouri, Y. Rugama, E. Sartori, The JEFF-3.1 nuclear data library. Tech. Rep. NEA–6190, Organisation for Economic Co-Operation and Development, Nuclear Energy Agency - OECD/NEA, Issy-les-Moulineaux (2006)

  20. C. Fiorina, M. Aufiero, A. Cammi, C. Guerrieri, J. Krepel, L. Luzzi, K. Mikityuk, M.E. Ricotti, in Proceedings of International Conference On Nuclear Engineering (ICONE) (Anaheim, USA, 2012)

  21. A. Cammi, V. Di Marcello, L. Luzzi, V. Memoli, M.E. Ricotti, Ann. Nuclear Energy 38(6), 1356 (2011). https://doi.org/10.1016/j.anucene.2011.01.037

    Article  Google Scholar 

  22. A. Cammi, C. Fiorina, C. Guerrieri, L. Luzzi, Nucl. Eng. Design 246, 12 (2012). https://doi.org/10.1016/j.nucengdes.2011.08.002. Selected and expanded papers from International Conference Nuclear Energy for New Europe 2010, Portoroz, Slovenia, September 6–9, 2010

  23. E. van der Linden, Coupled neutronics and computational fluid dynamics for the molten salt fast reactor. Master’s thesis, Technical University of Delft, Delft, Netherlands (2012)

  24. L.Y. Jiang, I. Campbell, Int. J. Heat Mass Transf. 51(5), 1251 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.006

    Article  Google Scholar 

  25. Y. Tominaga, T. Stathopoulos, Atmos. Environ. 41(37), 8091 (2007). https://doi.org/10.1016/j.atmosenv.2007.06.054

    Article  ADS  Google Scholar 

  26. J. Lamarsh, Introduction to Nuclear Reactor Theory, 1st edn. (Addison-Wesley Pub. Co., New York, 1966)

    Google Scholar 

  27. D.G. Cacuci, Sensitivity and Uncertainty Analysis. Theory, vol. 1 (Chapman and Hall/CRC, New York, 2003)

    Book  Google Scholar 

  28. A. Cammi, V. Di Marcello, C. Fiorina, L. Luzzi, in Proceedings of COMSOL Conference (Boston, USA, 2009)

  29. C. Fiorina, A generalized approach to assess the COMSOL capabilities for the analysis of the MSR thermo-fluid dynamics. Master’s thesis, Politecnico di Milano, Milan, Italy (2009)

  30. M. Zanetti, Development of new tools for the analysis and simulation of circulating-fuel reactor power plants. Ph.D. thesis, Politecnico di Milano, Milan, Italy (2016)

  31. E. Merle-Lucotte, D. Heuer, M. Allibert, M. Brovchenko, N. Capellan, V. Ghetta, in Proceedings of ICAPP 2011 (Nice, France, 2011)

  32. P.R. Amestoy, I.S. Duff, J. Koster, J.Y. L’Excellent, SIAM J. Matrix Anal. Appl. 23(1), 15 (2001). https://doi.org/10.1137/S0895479899358194

    Article  MathSciNet  Google Scholar 

  33. P.R. Amestoy, A. Guermouche, J.Y. L’Excellent, S. Pralet, Parallel Comput. 32(2), 136 (2006). https://doi.org/10.1016/j.parco.2005.07.004

    Article  MathSciNet  Google Scholar 

  34. C. Fiorina, The Molten Salt Fast Reactor as a fast spectrum candidate for Thorium implementation. Ph.D. thesis, Politecnico di Milano, Milan, Italy (2013)

  35. H. Rouch, O. Geoffroy, P. Rubiolo, A. Laureau, M. Brovchenko, D. Heuer, E. Merle-Lucotte, Ann. Nuclear Energy 64, 449 (2014). https://doi.org/10.1016/j.anucene.2013.09.012

    Article  Google Scholar 

  36. A. Laureau, P.R. Rubiolo, D. Heuer, E. Merle-Lucotte, M. Brovchenko, in Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (2014)

  37. X. Doligez, Fuel salt reprocessing influence on the MSFR behavior and on its associated reprocessing unit. Ph.D. thesis, Institut National Polytechnique de Grenoble - INPG, Grenoble, France (2010)

  38. M. Brovchenko, D. Heuer, E. Merle-Lucotte, M. Allibert, V. Ghetta, A. Laureau, P. Rubiolo, Nuclear Sci. Eng. 175(3), 329 (2013). https://doi.org/10.13182/NSE12-70

    Article  Google Scholar 

  39. E. Cervi, S. Lorenzi, A. Cammi, L. Luzzi, in Proceedings of International Conference Nuclear Energy for New Europe (Bled, Slovenia, 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cammi.

Additional information

Focus Point on Advances in the physics and thermohydraulics of nuclear reactors edited by J. Ongena, P. Ravetto, M. Ripani, P. Saracco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, P., Lorenzi, S. & Cammi, A. A multiphysics model for analysis of inert gas bubbles in Molten Salt Fast Reactor. Eur. Phys. J. Plus 135, 409 (2020). https://doi.org/10.1140/epjp/s13360-020-00428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00428-2

Navigation