A Serpent/OpenFOAM coupling for 3D burnup analysis

Abstract

In nuclear reactor analysis, a relevant challenge is to achieve a suitable global description of nuclear systems through the coupling between neutronics and thermal hydraulics. Indeed, a multi-physics approach improves the reactor safety analysis and the design of different types of nuclear systems; in addition, it allows the investigation of physical effects at different scales of time and space. In this context, a challenging task is the development of multi-physics tools to study the fuel cycle. This paper presents a modelling approach for 3D burnup analysis with the Serpent Monte Carlo code that implements an external interface for the coupling with OpenFOAM, importing material temperatures and density field. We adopt CFD to simulate thermal hydraulics for its high flexibility that simplifies the management of input data. In addition, the coupling with a Monte Carlo code assures a natural description of the different physics phenomena of nuclear reactors. We carry out the burnup calculations for one year of burnup of a PWR fuel cell, composed of an \(\hbox {UO}_{2}\) pin surrounded by water. We compare the results to those obtained from simulations that adopt uniform temperature and density distributions. The results show that thermal hydraulics feedback influences the spatial distribution of the reaction rates over the time, leading to a remarkable effect on the nuclide density field along the radial and axial direction. In future works, we plan to extend the analysis for fuel assembly design.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Change history

  • 26 June 2020

    During production, mistakes have been introduced.

  • 26 June 2020

    During production, mistakes have been introduced.

References

  1. 1.

    A.G. Mylonakis, M. Varvayanni, N. Catsaros, P. Savva, D.G.E. Grigoriadis, Ann. Nucl. Energy 72, 104 (2014)

    Article  Google Scholar 

  2. 2.

    A. Cammi, V. Di Marcello, L. Luzzi, V. Memoli, A Multi-Physics Modelling Approach Oriented to Safety Analysis of Innovative Nuclear Reactors (Nova Science Publishers, Hauppauge, 2011)

    Google Scholar 

  3. 3.

    A. Cammi et al., Ann. Nucl. Energy 38, 1356 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    E. Cervi, S. Lorenzi, A. Cammi, L. Luzzi, Nucl. Eng. Des. 346, 209 (2019)

    Article  Google Scholar 

  5. 5.

    E. Cervi, S. Lorenzi, L. Luzzi, A. Cammi, Ann. Nucl. Energy 132, 227 (2019)

    Article  Google Scholar 

  6. 6.

    J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, Ann. Nucl. Energy 82, 142 (2015)

    Article  Google Scholar 

  7. 7.

    J.F. Briesmeister, MCNP—A General Monte Carlo N-Particle Code, Version 4C (LA-13709-M., Los Alamos National Laboratory, 2000)

  8. 8.

    E. Shwageraus, E. Fridman, E. Abramski, A. Galperin, in The 23th Conference of the Nuclear Societies in Israel Book of articles (Israel, 2006), p. 256

  9. 9.

    D.P. Griesheimer, Ann. Nucl. Energy 82, 29 (2015)

    Article  Google Scholar 

  10. 10.

    K. Wang et al., Ann. Nucl. Energy 82, 121 (2015)

    Article  Google Scholar 

  11. 11.

    V. Valtavirta, T. Viitanen, J. Leppänen, Nucl. Sci. Eng. 177, 193 (2014)

    Article  Google Scholar 

  12. 12.

    D. Kotlyar, Y. Shaposhnik, E. Fridman, E. Shwageraus, Nucl. Eng. Des. 241, 3777 (2011)

    Article  Google Scholar 

  13. 13.

    D.P. Griesheimer et al., Ann. Nucl. Energy 82, 29 (2015)

    Article  Google Scholar 

  14. 14.

    J. Leppanen, T. Viitanen, V. Valtavirta, Trans. Am. Nucl. Soc. 1074, 1165–1168 (2012)

    Google Scholar 

  15. 15.

    Lin-Sen Li, Hao-Min Yuan, Kan Wang, Nucl. Eng. Des. 250, 385 (2012)

    Article  Google Scholar 

  16. 16.

    A. Ivanov, V. Sanchez, U. Imke, Development of a Coupling Scheme Between MCNP5 and SUBCHANFLOW for the Pin- and Fuel Assembly-Wise Simulation of LWR and Innovative ReactorsM&C 2011 (Rio de Janeiro, Brazil, May 8–12, 2011)

  17. 17.

    D. Kotlyar, E. Shwageraus, Ann. Nucl. Energy 63, 371 (2014)

    Article  Google Scholar 

  18. 18.

    J. Dufek, J.E. Hoogenboom, Nucl. Sci. Eng. 162, 307 (2009)

    Article  Google Scholar 

  19. 19.

    L. Jutier et al., Nucl. Sci. Eng. 181, 105 (2015)

    Article  Google Scholar 

  20. 20.

    A. Cammi et al., Nucl. Eng. Des. 300, 308 (2016)

    Article  Google Scholar 

  21. 21.

    D. Chiesa, M. Clemenza, S. Pozzi, E. Previtali, M. Sisti et al., Ann. Nucl. Energy 96, 270 (2016)

    Article  Google Scholar 

  22. 22.

    H.G. Weller, G. Tabor, H. Jasak, C. Fureby, Comput. Phys. 12, 620 (1998)

    ADS  Article  Google Scholar 

  23. 23.

    https://openfoam.org/

  24. 24.

    C. Castagna et al., in Proceedings of 26th International Conference Nuclear Energy for New Europe (Bled, Slovenia, September 11–14, 2017), pp. 603.1–603.8

  25. 25.

    C. Castagna et al., in Proceedings of Physor 2018 (Cancún, México, April 22–26, 2018) pp. 2115–2125

  26. 26.

    C. Castagna, S. Lorenzi, A. Cammi, in Proceedings of 27th International Conference Nuclear Energy for New Europe (Portoroz, Slovenia, September 10–13, 2018), pp. 205.1–205.8

  27. 27.

    G. Grasso, C. Petrovich, D. Mattioli, C. Artioli, P. Sciora, D. Gugiu, G. Bandini, E. Bubelis, K. Mikityuk, Nucl. Eng. Des. 278, 287 (2014)

    Article  Google Scholar 

  28. 28.

    A. Bousbia-Salah, F. D’Auria, Prog. Nucl. Energy 49, 1 (2007)

    Article  Google Scholar 

  29. 29.

    C. Castagna, D. Chiesa, A. Cammi, S. Boarin, E. Previtali, M. Sisti, M. Nastasi, A. Salvini, G. Magrotti, M. Prata, Ann. Nucl. Energy 113, 171 (2018)

    Article  Google Scholar 

  30. 30.

    R. Eymard, T. Gallouet, R. Herbin, The Finite Volume Method. Handbook for Numerical Analysis (North Holland, Amsterdam, 2000), pp. 715–1022

    Google Scholar 

  31. 31.

    O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, The Finite Element Method for Fluid Dynamics (Elsevier, Butterworth-Heinemann, Amsterdam, 2013)

    Google Scholar 

  32. 32.

    The Westinghouse Pressurized Water Reactor nuclear power plant (Westinghouse Electric Corporation Water Reactor Divisions, 1984)

  33. 33.

    T.L. Perelman, Int. J. Heat Mass Transf. 3, 293 (1961)

    Article  Google Scholar 

  34. 34.

    Internal Assessment for the Properties of Water and Steam. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Technical Report (International Association for the Properties of Water and Steam, 2007)

  35. 35.

    J.R. Lamarsh, Introduction to Nuclear Engineering (Addison-Wesley, Boston, 1975)

    Google Scholar 

  36. 36.

    W.G. Luscher, K.J. Geelhood, Material Property Correlations: Comparisons Between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO. Technical Report. NUREG-CR-7024 (Pacific Northwest National Laboratory, 2011)

  37. 37.

    S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  38. 38.

    D.B. Spalding, J. Appl. Mech. 28, 455 (1961)

    ADS  Article  Google Scholar 

  39. 39.

    W. B. Weihermilfer, C. S. Allison, LWR Nuclear Fuel Bundle Data for Use in Fuel Bundle Handling. Topical Report EY-76-C-M-1830 (Pacific Northwest Laboratory, 1979)

  40. 40.

    A.E. Isotalo, P.A. Aarnio, Ann. Nucl. Energy 37, 1987 (2011)

    Article  Google Scholar 

  41. 41.

    OECD/NEA Data Bank, The JEFF-3.1.1 Nuclear Data Library. Technical Report 22, 2009

  42. 42.

    J.R. Lamarsh, Introduction to Nuclear Reactor Theory (Addison-Wesley Publishing Company, Boston, 1966)

    Google Scholar 

  43. 43.

    J. Dufek, D. Kotlyar, E. Shwageraus, Ann. Nucl. Energy 60, 295 (2013)

    Article  Google Scholar 

  44. 44.

    J. Dufek, D. Kotlyar, E. Shwageraus, Ann. Nucl. Energy 62, 260 (2013)

    Article  Google Scholar 

  45. 45.

    H. Robbins, S. Monro, Ann. Math. Stat. 22, 400 (1951)

    Article  Google Scholar 

  46. 46.

    D. Kotlyar, E. Shwageraus, Ann. Nucl. Energy 96, 61 (2016)

    Article  Google Scholar 

  47. 47.

    F. Gleicher et al., in Proceedings of Top Fuel 2016 (Boise, ID, USA, September 11–15, 2016), pp. 261–270

  48. 48.

    H.S. Jeong et al., Ann. Nucl. Energy 90, 240 (2016)

    Article  Google Scholar 

  49. 49.

    T. Viitanen, J. Leppänen, Nucl. Sci. Eng. 171, 165 (2012)

    Article  Google Scholar 

  50. 50.

    G. Rozza, D.B.P. Huynh, A.T. Patera, Arch. Comput. Methods Eng. 15, 229 (2008)

    MathSciNet  Article  Google Scholar 

  51. 51.

    C. Castagna, M. Aufiero, S. Lorenzi, G. Lomonaco, A. Cammi, Energies 13(4), 1 (2020)

    Article  Google Scholar 

  52. 52.

    C. Fiorina, I. Clifford, M. Aufiero, K. Mikityuk, Nucl. Eng. Des. 294, 24 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by CINECA Supercomputing Center, using the GALILEO cluster in Bologna (Italy), and by an Amazon Web Services (AWS) in Education grant award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Cammi.

Additional information

Focus Point on Advances in the physics and thermohydraulics of nuclear reactors edited by J. Ongena, P. Ravetto, M. Ripani, P. Saracco.

The original version of this article was revised: In table 2 “gd Radial direction” reads correctly “Radial direction”. In table 3, in row “Pu-239”, the entries in columns 14 and 15 were wrong and have been corrected.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castagna, C., Cervi, E., Lorenzi, S. et al. A Serpent/OpenFOAM coupling for 3D burnup analysis. Eur. Phys. J. Plus 135, 433 (2020). https://doi.org/10.1140/epjp/s13360-020-00427-3

Download citation