Skip to main content

Advertisement

Log in

Entropy analysis for the peristaltic flow of third grade fluid with variable thermal conductivity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently there is a need to enhance the cooling capabilities required in many industrial applications. Therefore it is important to know the factors for system’s disorderliness. This work is based on the study of entropy analysis in fluid transport phenomenon by peristalsis. Mixed convective flow in compliant wall channel is considered. Here third grade fluid is considered. Effect of gravity is also encountered. Magnetohydrodynamic and Joule heating are part of flow modeling. Energy equation is addressed subject to viscous dissipation and variable thermal conductivity. Resulting system is solved with the help of NDSolve command in Mathematica. Proper attention is given to the study of velocity, temperature and entropy analysis. This analysis is carried out via graphical results for different embedded parameters. Graphs for heat transfer coefficient are also plotted and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. T. W. Latham, Fluid motion in a peristaltic pump, MS Thesis, MIT, Cambridge, MA (1966)

  2. A.H. Shapiro, M.Y. Jafrin, S.L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)

    Article  ADS  Google Scholar 

  3. S.R. Kumar, MHD peristaltic transportation of a conducting blood flow with porous medium through inclined coaxial vertical channel. Int. J. Bio-Sci. Bio-Technol. 8, 11–26 (2016)

    Article  Google Scholar 

  4. S. Mosayebidorcheh, M. Hatami, Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel. Int. J. Heat Mass Trans. 126, 790–799 (2018)

    Article  Google Scholar 

  5. M.M. Bhatti, A. Zeeshan, N. Ijaz, O.A. Bég, A. Kadir, Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng. Sci. Technol. Int. J. 20, 1129–1139 (2017)

    Google Scholar 

  6. J. Prakash, A. Sharma, D. Tripathi, Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liqs. 249, 843–855 (2018)

    Article  Google Scholar 

  7. T. Hayat, S. Nawaz, A. Alsaedi, B. Ahmad, Peristaltic activity of blood–titanium nanofluid subject to endoscope and entropy generation. J. Braz. Soc. Mech. Sci. Eng. 40, 574 (2018)

    Article  Google Scholar 

  8. K. Javid, N. Ali, M. Sajid, Simultaneous effects of viscoelasticity and curvature on peristaltic flow through a curved channel. Meccanica 51, 87–98 (2016)

    Article  MathSciNet  Google Scholar 

  9. T. Hayat, S. Rani, A. Alsaedi, M. Rafiq, Radiative peristaltic flow of magneto nanofluid in a porous channel with thermal radiation. Results Phys. 7, 3396–3407 (2017)

    Article  ADS  Google Scholar 

  10. N.N. Jyothi, P. Devaki, S. Sreenadh, Analysis of magnetic field on the peristaltic transport of Johnson fluid in an inclined channel bounded by flexible walls. Int. J. Curr. Res. 8, 26617–26634 (2016)

    Google Scholar 

  11. K.V.V. Satyanarayana, S. Sreenadh, P. Lakshminarayana, G. Sucharitha, MHD peristaltic transport of a micropolar fluid in an asymmetric channel with porous medium. Adv. Appl. Sci. Res. 7, 105–114 (2016)

    Google Scholar 

  12. T. Hayat, S. Hina, A.A. Hendi, S. Asghar, Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer. Int. J. Heat Mass Trans. 54, 5126–5136 (2011)

    Article  Google Scholar 

  13. T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, Consequences of variable thermal conductivity and activation energy on peristalsis in curved configuration. J. Mol. Liqs. 263, 258–267 (2018)

    Article  Google Scholar 

  14. M.M. Bhatti, M.A. Abbas, Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Alex. Eng. J. 55, 1017–1023 (2016)

    Article  Google Scholar 

  15. A.M. Abd-Alla, S.M. Abo-Dahab, A. Kilicman, Peristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscope. J. Magn. Magn. Mater. 384, 79–86 (2015)

    Article  ADS  Google Scholar 

  16. G.C. Shit, N.K. Ranjit, Role of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: Application to digestive system. J. Mol. Liq. 221, 305–315 (2016)

    Article  Google Scholar 

  17. T. Hayat, S. Nawaz, A. Alsaedi, M. Rafiq, Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel. Results Phys. 7, 982–990 (2017)

    Article  ADS  Google Scholar 

  18. H.M. Sayed, E.H. Aly, K. Vajravelu, Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel. Alex. Eng. J. 55, 2209–2220 (2016)

    Article  Google Scholar 

  19. A. Bejan, Second law analysis in heat transfer. Energy 5, 720–732 (1980)

    Article  ADS  Google Scholar 

  20. A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-time Systems and Finite-time Processes (CRC Press, New York, 1996)

    MATH  Google Scholar 

  21. M. Sheikholeslami, D.D. Ganji, Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method. Phys. A 417, 273–286 (2015)

    Article  Google Scholar 

  22. T. Hayat, S. Nawaz, A. Alsaedi, Entropy generation in peristalsis with different shapes of nanomaterial. J. Mol. Liq. 248, 447–458 (2017)

    Article  Google Scholar 

  23. S. Farooq, T. Hayat, A. Alsaedi, S. Asghar, Mixed convection peristalsis of carbon nanotubes with thermal radiation and entropy generation. J. Mol. Liq. 250, 451–467 (2018)

    Article  Google Scholar 

  24. N.S. Akbar, Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy 82, 23–30 (2015)

    Article  Google Scholar 

  25. T. Hayat, S. Farooq, B. Ahmed, A. Alsaedi, Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance. Int. J. Heat Mass Trans. 106, 244–250 (2017)

    Article  Google Scholar 

  26. S. Nawaz, T. Hayat, A. Alsaedi, Numerical study for peristalsis of Sisko nanomaterials with entropy generation. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08546-5

    Article  Google Scholar 

  27. N.S. Akbar, M. Raza, R. Ellahi, Peristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generation. Results Phys. 5, 115–124 (2015)

    Article  ADS  Google Scholar 

  28. T. Hayat, S. Nawaz, A. Alsaedi, Entropy analysis for the peristalsis flow with homogeneous–heterogeneous reaction. Eur. Phys. J. Plus 135, 296 (2020)

    Article  Google Scholar 

  29. M.A. Abbas, Y. Bai, M.M. Rashidi, M.M. Bhatti, Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy 18, 90 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Higher Education Commission (HEC) of Pakistan for financial support of this work under the project number No. 20-3088/NRPU/R&D/HEC/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Nawaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Nawaz, S., Alsaedi, A. et al. Entropy analysis for the peristaltic flow of third grade fluid with variable thermal conductivity. Eur. Phys. J. Plus 135, 421 (2020). https://doi.org/10.1140/epjp/s13360-020-00421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00421-9

Navigation